Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции / Тексты лекций физика / Лекция 11-Термодинамика..doc
Скачиваний:
339
Добавлен:
18.06.2017
Размер:
183.81 Кб
Скачать

7. Второе начало термодинамики для изолированных систем.

Изолированными называют системы, которые не обмениваются с окружающей средой ни веществом, ни энергией. Абсолютно изолированных систем не бывает, но во многих случаях (например, для вещества в хорошем термосе) можно практически считать систему изолированной.

В изолированной системе общее изменение энтропии всегда положительно (то есть общая энтропия изолированной системы всегда возрастает).

Здесь важно не опустить слово „общее“. В какой-то части системы энтропия может уменьшиться, но это обязательно должно быть скомпенсировано увеличением энтропии в других частях системы.

Из формулы (18): ΔG = ΔUT·ΔS видно, что если энтропия возрастает (ΔS > 0), то свободная энергия системы уменьшается (ΔG < 0). Поэтому второе начало можно сформулировать и по-другому: В изолированной системе общее изменение свободной энергии всегда отрицательно (то есть свободная энергия изолированной системы всегда уменьшается).

Эта формулировка более наглядна. Мы знаем, что во всех реальных процессах происходит диссипация свободной энергии, то есть часть свободной энергии превращается в связанную (преимущественно в тепловую). Если система изолированная, то извне свободная энергия не поступает, поэтому общий запас свободной энергии системы должен уменьшаться.

Второе начало термодинамики в приведенной формулировке имеет очень большое практическое значение, потому что оно позволяет точно установить, в каком направлении будет происходить тот или иной процесс. Например, если мы установим при расчёте, что при некотором процессе общая свободная энергия изолированной системы должна увеличиваться, можно категорически утверждать, что такой процесс невозможен.

Ещё чаще встречается такая ситуация: мы хотим провести некоторый физический или химический процесс в нужном нам направлении, и надо определить, при каких условиях это можно осуществить. В большинстве случаев применение второго начала термодинамики позволяет найти чёткий ответ на этот вопрос. Можно привести такой пример из техники. Для многих отраслец промышленности необходимо иметь в большом количестве алмазный инструмент. Природные алмазы слишком дороги, поэтому ещё в XIX веке пытались получить искусственные алмазы. Было потрачено много сил и средств, но эти попытки ни к чему не приводили, пока киевский физик Верещагин не провёл термодинамический расчёт и не определил условия, при которых графит может превращаться в алмаз. Условия оказались очень непростыми (температура не ниже 10000С и давление не менее 150 тысяч атмосфер), но когда необходимые условия были чётко сформулированы, довольно быстро удалось наладить промышленное производство искусственных алмазов. Таких примеров можно привести много (в том числе из химических производств, технологии изготовления электронных приборов, ракетно-космической техники и т.п.).

8. Вероятностный смысл второго начала термодинамики. Флуктуации. Упорядоченность структуры в свете 2 начала термодинамики.

Данное ранее определение энтропии носит несколько формальный характер. Остаётся неясным, почему именно изменение энтропии указывает направление процессов. Первым понял суть дела гениальный физик Людвиг Больцман. Он обратил внимание на то, что разные состояния тела, соответствующие различному расположению молекул (атомов, ионов) и разным значениям их скоростей, осуществляются с очень разной вероятностью. Поясним этот довольно сложный вопрос на относительно простых примерах.

Начнём с простейшего случая, когда в каком-то объёме находятся всего лве одинаковые молекулы „а“ и „б“ Разделим мысленно объём на две половины. Очевидно, что возможны четыре варианта расположения молекул:

слева

справа

1

а, б

---

2

а

б

3

б

а

4

---

а, б

Вероятность каждого варианта равна 0,25. Но варианты 2 и 3 практически неотличимы, так как молекулы одинаковы. Поэтому их надо считать за одно состояние, вероятность которого равна 0,5. Таким образом, состояние с равномерным распределением будет встречаться вдвое чаще, чем те состояния, когда обе молекулы слева или обе справа, хотя такие случаи тоже будут наблюдаться. По законам теории вероятностей с ростом числа молекул состояния с равномерным распределением будут иметь всё большую вероятность по сравнению с другими. Скажем, можно ли ожидать, что 40% молекул воздуха сами по себе в результате хаотического теплового движения соберутся в одной половине колбы, а 60% - в другой? В принципе такой случай возможен, но вероятность подобного события исчезающе мала.

В результате глубокого анализа Л.Больцман установил связь между вероятностью состояния и энтропией системы частиц. Эта связь выражается формулой Больцмана: S = k · ln PТД (21).

Здесь k – постоянная Больцмана (k = 1,37.10 –23 Дж.К –1), а РТДтермодинамическая вероятность данного состояния системы.

Термодинамическая вероятность – это число вариантов расположения молекул и распределения их скоростей, соответствующая данному состоянию системы.

По самому смыслу понятия вероятности любая система, предоставленная сама себе (то есть изолированная), будет переходить из состояния с меньшей вероятностью в состояние, вероятность которого больше. Обратный переход в принципе возможен, но практически невероятен. Учитывая формулу Больцмана, мы сразу приходим к формулировке второго начала термодинамики: все реальные процессы в изолированной системе происходят в сторону состояний с большей вероятностью, то есть с увеличением энтропии. Таким образом, второе начало является вероятностным законом.

Флуктуации. Когда мы имеем дело с телами относительно большой массы, содержащими огромное количество молекул, отступления от второго начала практически никогда не наблюдаются. Однако, если мы переходим к малым (микроскопическим) масштабам, отступления от строгих законов теории вероятностей становятся всё более заметными. Например, если в стакане воздуха самопроизвольное отклонение в плотности газа на 1% абсолютно невероятно, то в объёме газа диаметром меньше 1 микрометра (1 мкм = 10 –6 м) подобные колбания плотности водуха на самом деле всё время происходят. Точно так же вследствие хаотичности движения молекул в микроскопических масштабах колеблются давление, энергия, концентрация ионов и многие другие величины. Подобные самопроизвольные колебания физических характеристик, происходящие в микроскопических масштабах, называются флуктуациями.

Флуктуации являются наглядным примером вероятностного характера физических процессов. Абсолютно невозможно точно предсказать, где, когда и в какую сторону изменится, например, плотность в данном объёме газа. Однако, вполне возможно (по крайней мере, в не очень сложных случаях) рассчитать вероятность той или иной флуктуации; такие расчёты многократно проводились в хорошим согласием с опытом.

Флуктуации бывают и в живых организмах. Например, вследствие флуктуаций молекул мембраны каналы, через которые идёт перенос ионов через мембрану, случайным образом то открываются, то закрываются (это можно наблюдать в опыте). Флуктуации в рецепторных клетках заметно влияют на восприятие слабых сигналов (света, звука и др.), которые теряются на фоне флуктуационного „шума“, то есть хаотических колебаний разности потенциалов на мембране, возникающих в результате флуктуаций. Для борьбы с этим явлением живые организмы выработали в ходе эволюции сложные приспособления, о которых не место говорить в данной лекции. Сейчас большое внимание уделяется исследованию флуктуаций в центральной нервной системе; по-видимому, они играют существенную роль во многих нервных процессах.

Особенно интересно, что, как показал Н.В.Тимофеев-Рессовский, возникающее в результате флуктуаций точечное кратковременное возрастание энергии около молекулы ДНК может вызвать мутацию. По мнению Тимофеева-Рессовского, большинство мутаций в обычных условиях возникают именно таким образом.