Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература / Биологическая Химия Северин 2008

.pdf
Скачиваний:
28344
Добавлен:
17.06.2017
Размер:
6.06 Mб
Скачать

Раздел 5. Общие аспекты регуляции

111

взаимодействие α-субъединицы с аденилатциклазой приводит к изменению конформации фермента и его активации, увеличивается скорость образования цАМФ из АТФ;

конформационные изменения в комплексе [α-ГТФ][АЦ] стимулируют повышение ГТФ — фосфатазной активности α-субъединицы. Протекает

Рис. 5.6. Механизм действия гормонов, опосредованный цАМФ

112

Биологическая химия

реакция дефосфорилирования ГТФ, и один из продуктов реакции — неорганический фосфат (Рi) отделяется от α-субъединицы; скорость гидролиза определяет время проведения сигнала;

образование в активном центре α-субъединицы молекулы ГДФ снижает его сродство к аденилатциклазе, но увеличивает сродство к βγсубъединицам. Gs-белок возвращается к неактивной форме;

если рецептор связывается с новой молекулой активатора, например гормоном, цикл функционирования Gs белка повторяется.

Активация протеинкиназы А (ПКА)

Молекулы цАМФ могут обратимо соединяться с регуляторными субъединицами ПКА. Присоединение цАМФ к регуляторным субъединицам (R) вызывает диссоциацию комплекса С2R2 на комплекс цАМФ4 R2 и С + С. Субъединицы С представляют собой активную форму протеинкиназы А.

Активная протеинкиназа А фосфорилирует специфические белки по серину и треонину, в результате изменяются конформация и активность фосфорилированных белков, а это приводит к изменению скорости и направления регулируемых процессов в клетке.

Концентрация цАМФ в клетке может изменяться, она зависит от соотношения активностей ферментов аденилатциклазы и фосфодиэстеразы.

Большую роль в регуляции внутриклеточной сигнальной системы играет белок АКАРs. «Заякоренный» белок АКАРs участвует в сборке ферментных комплексов, включающих не только протеинкиназу А, но и фосфодиэстеразу и фосфопротеинфосфатазу.

Инозитолфосфатная система

Инозитолфосфатная система включает 3 основных мембранных белка: R (рецептор), фосфолипазу С и Gplc — белок, активирующий фосфолипазу С, а также белки и ферменты мембран цитозоля, участвующие в связывании и транспорте Са2+.

Последовательность событий, приводящих к активации фосфолипазы С:

связывание гормона с R приводит к изменению его конформации и увеличению сродства к Gplc;

образование комплекса [Г][R][ Gplc –ГДФ] приводит к снижению сродства α-протомера Сplc-белка к ГДФ и увеличению сродства к ГТФ. ГДФ за-

меняется на ГТФ.

Это вызывает диссоциацию комплекса; α-GTP взаимодействует с фосфолипазой С и активирует ее. Субстратом этого фермента является фосфатидилинозитолбисфосфат (ФИФ2).

В результате гидролиза ФИФ2 образуется и выходит в цитозоль гидрофильное вещество инозитолтрифосфат (ИФ-3). Другой продукт реакции, диацилглицерол (ДАГ), остается в мембране и участвует в активации фермента протеинкиназы С (ПКС).

Раздел 5. Общие аспекты регуляции

113

ИФ-3 связывается со специфическими центрами Са2+-канала мембраны ЭР, он изменяет конформацию и канал открывается — Са2+ поступает в цитозоль. В отсутствие в цитозоле ИФ-3 канал закрыт.

Повышение концентрации Са2+ в цитозоле клетки увеличивает скорость взаимодействия Са2+ с неактивным цитозольным ферментом протеинкиназой С и белком кальмодулином, таким образом сигнал, принятый рецептором клетки, раздваивается.

Изменение конформации [ПКС][Са2+] увеличивает сродство центров связывания фермента к липидам клеточной мембраны — ДАГ и фосфатидилсерину (ФС). На внутренней стороне мембраны образуется ферментный комплекс — [ПКС][Са2+] [ДАГ] [ФС] — активная протеинкиназа С, которая меняет активность специфических ферментов, фосфорилируя их по серину и треонину.

В клетках тканей присутствует белок кальмодулин, который функционирует как внутриклеточный рецептор Са2+, он имеет 4 центра для связывания Са2+. Комплекс [кальмодулин][4Са2+] не обладает ферментативной активностью, но взаимодействие комплекса с различными белками и ферментами приводит к их активации.

Для снижения концентрации Са2+ в клетке до исходного уровня работают системы Са2+-АТФаз и транслоказ (антипорт).

При повышении в клетке концентрации Са2+ увеличивается активность Са2+-АТФазы (Е):

это приводит к активации аутофосфорилирования и образованию фосфорилированной формы Са2+-АТРазы (Е-Р);

аутофосфорилирование вызывает изменение конформации Са2+-АТФазы, снижение ее сродства к Са2+ и высвобождение ионов по другую сторону мембраны.

Активность транслоказ Са2+ и Са2+-АТФ-аз может регулироваться:

комплексом [кальмодулин][4Са2+];

ПКА (фосфорилированием);

ПКС (фосфорилированием), а также зависит от структуры и состава липидного бислоя мембраны.

Присутствующие в цитозоле ИФ-3 и ДАГ в мембране могут в результате серии реакций опять превращаться в ФИФ2. Активная ПКС стимулирует образование ФИФ2 (рис. 5.7).

Трансдукция сигнала через инсулиновый рецептор

Рецептор инсулина (рис. 5.8) представляет собой тирозиновую протеинкиназу (ТП), т.е. протеинкиназу, фосфорилируюшую белки по ОН-группам тирозина. Рецептор состоит из 2 α- и 2 β-субъединиц, связанных дисульфидными связями и нековалентными взаимодействиями, α- и β-субъединицы являются гликопротеинами с углеводной частью на наружной стороне мембраны. Вне мембраны находятся α-субъединицы. Центр связывания инсулина образуют N-концевые домены α-субъединиц, a β-субъединицы пронизывают мембранный бислой и не участвуют в связывании инсулина.

114

Биологическая химия

 

 

 

 

 

 

Рис. 5.7. Инозитолфосфатная система

Каталитический центр ТП находится на внутриклеточных доменах β-субъединиц. Присоединение инсулина к центру связывания на α-субъеди- ницах активирует аутофосфорилирование β-субъединиц, причем субстратом служит сама ТП. β-субъединицы фосфорилируются по нескольким тирозиновым остаткам. Это, в свою очередь, приводит к способности ТП фосфорилировать и другие внутриклеточные белки. Активация и изменение специфично-

Раздел 5. Общие аспекты регуляции

115

 

 

 

 

Рис. 5.8. Активации рецептора инсулина — тирозиновой протеинкиназы

сти обусловлены конформационными изменениями рецептора инсулина после связывания инсулина и аутофосфорилирования.

Фосфорилирование внутриклеточных белков, участвующих в регуляции клеточных процессов, меняет их активность.

Стероидные гормоны являются веществами гидрофобного характера. Они легко преодолевают фосфолипидный барьер мембран и попадают в цитозоль

116

Биологическая химия

клетки, где связываются с рецепторами. Образующийся комплекс гормон– рецептор перемещается в ядро, взаимодействует с хроматином и стимулирует или репрессирует транскрипцию определенных генов. Некоторые гормоны взаимодействуют с рецепторами, локализованными в ядре в составе хроматина. Таким образом, эти гормоны регулируют метаболические процессы, изменяя скорость биосинтеза ключевых белков (рис. 5.9).

Рис. 5.9. Механизм действия стероидных гормонов

Раздел 6

Биологическое окисление

Катаболизм органических веществ в тканях сопровождается потреблением кислорода и выделением СО2. Этот процесс называют тканевым дыханием. Кислород в этом процессе используется как акцептор водорода от окисляемых (дегидрируемых) веществ (субстратов), в результате чего синтезируется вода. Процесс окисления можно представить следующим уравнением: SH2 + 1/2O2 → S + H2O.

Различные окисляемые органические вещества (S-субстраты) представляют собой метаболиты катаболизма, их дегидрирование является экзергоническим процессом. Энергия, освобождающаяся в ходе реакций окисления, либо полностью рассеивается в виде тепла, либо частично тратится на фосфорилирование АДФ с образованием АТФ. Организм превращает около 40% энергии, выделяющейся при окислении, в энергию макроэргических связей АТФ. Большинство организмов в биосфере использует этот способ или очень сходный с ним (в качестве терминального акцептора водорода может быть не кислород, а другое соединение) как основной источник энергии, необходимый для синтеза внутриклеточной АТФ. Таким путем клетка превращает химическую энергию питательных веществ, поступивших извне, в энергию, утилизируемую на разные виды работы.

Реакция дегидрирования и способ превращения выделившейся энергии путем синтеза АТФ — это энергетически сопряженные реакции. Синтез АТФ из АДФ и Pi за счет биологического окисления называется окислительным фосфорилированием (рис. 6.1).

Цепь переноса электронов — ЦПЭ

Указанное выше уравнение для окислительно-восстановительной реакции представляет собой обобщенную форму, так как изображает процесс окисления субстратов как прямое дегидрирование, причем кислород выступает в роли непосредственного акцептора водорода. На самом деле кислород получает электроны иным образом. Существуют промежуточные переносчики при транспорте электронов от исходного донора электронов SH2 к терминальному акцептору — О2. Полный процесс представляет собой цепь последовательных окислительно-

117

118

 

 

 

 

Биологическая химия

 

 

 

 

 

 

A. SH2 + 1/2O2

 

 

S + H2O (окисление, экзоэргический процесс)

 

Энергия

 

 

Тепловая энергия

 

 

Б. AДФ + H3PO4

 

 

АТФ (фосфорилирование, эндоэргический процесс)

 

 

 

 

 

 

 

Рис. 6.1. Окислительное фосфорилирование

восстановительных реакций, в ходе которых происходит взаимодействие между переносчиками. Каждый промежуточный переносчик вначале выступает в роли акцептора электронов и протонов и из окисленного состояния переходит в восстановленную форму. Затем он передает электрон следующему переносчику и снова возвращается в окисленное состояние. На последней стадии переносчик передает электроны кислороду, который затем восстанавливается до воды. Совокупность последовательных окислительно-восстановительных реакций называется цепью переноса (транспорта) электронов, или дыхательной цепью (рис. 6.2).

Рис. 6.2. Митохондриальная цепь переноса электронов:

I, III и IV — высокомолекулярные комплексы, расположенные во внутренней мембране митохондрий; комплекс II — сукцинатдегидрогеназа, в отличие от других FAD-зависимых дегидрогеназ локализована во внутренней мембране митохондрий, но на рисунке не представлена. Цитохром с — низкомолекулярный гемсодержащий белок, обладающий подвижностью в липидном слое мембраны митохондрий. Белки FeS содержат негеминовое железо и входят в состав ферментных комплексов I, II и III. Кофермент Q — небелковый компонент ЦПЭ. Места действия ингибиторов ЦПЭ показаны жирными стрелками: I — ротенон, барбитураты; 2 — антимицин; 3 — цианиды, СО, H2S

Раздел 6. Биологическое окисление

119

Промежуточными переносчиками в дыхательной цепи у высших организмов являются коферменты: NAD+ (никотинамид-адениндинуклеотид), FAD и FMN (флавинадениндинуклеотид и флавинмононуклеотид), кофермент Q (CoQ), семейство гемсодержащих белков — цитохромов (обозначаемых как цитохромы b, c1, c, a, a3) и белки, содержащие негеминовое железо. Все участники этой цепи организованы в четыре окислительно-восстановительных комплекса (рис. 6.5), связанные убихиноном (CoQ) и цитохромом c.

Процесс начинается с переноса протонов и электронов от окисляемого субстрата на коферменты NAD+ или FAD. Это определяется тем, является ли дегидрогеназа, катализирующая первую стадию, NAD-зависимой или FADзависимой. NAD-зависимая дегидрогеназа катализирует реакции окисления непосредственно субстрата (первичная дегидрогеназа). NAD+ является коферментом и выполняет роль акцептора водорода (рис. 6.3). FAD-зависимая деги-

H

O

 

 

H

 

H

O

 

 

 

 

 

 

 

 

 

 

 

C

 

+2e-, +2H+

 

 

C

 

 

 

NH

2

 

 

NH

2

 

 

 

 

 

 

 

 

+

 

 

-

+

 

 

+ H

+

 

N

 

 

-2e , -2H

 

N

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

R

 

 

 

 

 

NAD+

 

NADH + H+

 

 

 

R

 

 

R

H

H3C

N N

O

H3C

N

N O

 

 

+2e-, +2H+

 

 

 

H3C

NH

-2e-, -2H+

H3C

N

NH

N

 

 

 

O

 

 

H

O

Рис. 6.3. Коферменты дегидрогеназ.

Структурные формулы рабочей части коферментов NAD+ и NADP+, FAD и FMN. В окисленной форме никотинамидные коферменты обозначают как NAD+ и NADP+, так как они несут положительный заряд на атоме азота пиридинового кольца. В реакциях дегидрирования из двух атомов водорода, отщепляемых от окисляемого субстрата, никотинамидное кольцо присоединяет ион водорода и два электрона в форме гидрид-иона (:Н). Второй ион переходит в среду. В обратной реакции NADН (NADPН) выступают в качестве доноров электронов и протонов. В ходе реакции FAD и FMN присоединяют два электрона и два протона катализируемых FAD-зависимой и NADН-дегидрогеназами

120

Биологическая химия

дрогеназа также выполняет функцию первичной дегидрогеназы. Кофермент FAD является акцептором водорода от субстрата. Если процесс начинается с NAD+, то следующим переносчиком будет NADH-дегидрогеназа, коферментом которой является FMN.

Тип участвующей дегидрогеназы зависит от природы субстрата. Но каким бы ни был исходный субстрат, электроны и протоны от флавинов переносятся к коферменту Q, а дальше пути электронов и протонов расходятся. Электроны с помощью системы цитохромов достигают кислорода, который затем, присоединяя протоны, превращается в воду. Чтобы разобраться в системе транспорта электронов, необходимо познакомиться с отдельными ее участниками.

Символ 2Н+ означает два протона, обычно переносимые в виде гидрида иона. В этом случае вместо терминов «донор электронов» и «акцептор электронов» иногда используют термины «донор или акцептор водорода».

NADH-дегидрогеназа катализирует окисление NADH и восстановление убихинона (CoQ). Переносчиком водорода является кофермент — FMN (комплекс I на рис. 6.5). Строение FMN представлено на рис. 6.3. В процессе реакции водород сначала присоединяется к FMN, соединенному с ферментом, а затем протоны поступают в межмембранное пространство, а электроны с помощью FeS-белков передаются на убихинон. Флавиновые коферменты (FAD и FMN) содержат производные витамина B2 и прочно связаны с ферментом, поэтому ферменты, в состав которых они входят, называются флавопротеинами. Акцептором электронов от комплекса I является убихинон (кофермент Q, рис. 6.4) — производное изопрена, его название возникло из-за повсеместной распространенности в природе.

Получая 2e из матрикса митохондрий, он восстанавливается в убихинол. Кофермент Q действует как переносчик электронов на цитохромы. Цитохромы это гемопротеины, содержащие в качестве простетической группы гем, прочно связанный с белковой частью. Атом железа в геме может менять валентность, присоединяя или отдавая электроны:

.

Вдыхательной цепи цитохромы служат переносчиками электронов и располагаются соответственно величине окислительно-восстановительного потен-

циала следующим образом: b, c1, c, а, а3. Гемовые группы цитохромов связаны с белковой частью координационными связями между ионом железа и соответствующими аминокислотными остатками.

Вцитохромах c и c1 дополнительные ковалентные связи формируются между тиоловыми группами цистеина и боковыми винильными группами гема.

2-дегидрогеназа (комплекс III на рис. 6.5) представляет собой комплекс цитохромов b и c1. Этот фермент катализирует окисление восстановленного

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке Литература