Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
госы / Ответы.docx
Скачиваний:
229
Добавлен:
09.06.2017
Размер:
8.48 Mб
Скачать

2. Требования, предъявляемые к камерам сгорания.

1. Достаточно высокая полнота сгорания топлива.

Значительная неполнота сгорания не только снижает экономичность двигателя, но и способствует усиленному нагарообразованию в камерах и дымлению двигателя.

2. Минимальные потери тепла через стенки камеры во внешнюю среду.

3. Достаточно малая неравномерность температурного поля газового потока в поперечном сечении кольцевого канала на выходе из камеры сгорания.

На выходе из камеры сгорания всегда имеются зоны с более высокой и с более низкой температурой, чем среднемассовая расчетная температура ТГ*. Опасность представляет лишь чрезмерное местное повышение температуры, которое может привести к прогоранию отдельных сопловых лопаток.

4. У корневых сечений лопаток температура газа должна быть более низкой, чтобы повысить прочность лопаток в этих сечениях, работающих с наибольшими напряжениями под действием центробежных сил. Более низкие температуры желательны и в периферийной части канала, чтобы уменьшить возможность обгорания концевых, наиболее тонких, сечений лопаток и понизить температуру корпуса двигателя.

Наибольшая температура допускается в ядре кольцевого потока – в зоне, соответствующей примерно от 0,5 до 0,7 высоты лопаток.

5. Низкие гидравлические потери, т. е. достаточно высокие значения коэффициента .

Это необходимо для избежания существенного ухудшения показателей двигателя из-за уменьшения работы расширения.

6. Устойчивое горение, т. е. горение без вибраций и срывов пламени во всем диапазоне рабочих режимов камеры в эксплуатации.

7. Минимальная длина факела пламени, поскольку она влияет на длину камеры в целом.

8. Высокий уровень скоростей воздуха и газов, при котором поперечный (диаметральный) габарит камеры получается достаточно малым.

9. Надежный розжиг (запуск) камер при всех условиях эксплуатации.

10. Прочность и жаростойкость, обеспечивающие требуемый гарантийный срок службы камер (ресурс) без ремонта.

11. Минимальная масса и достаточно малые габаритные размеры камеры.

При этом длина камеры должна быть по возможности меньшей, поскольку она обычно непосредственно влияет на длину вала, связывающего турбину с компрессором. Поперечные размеры камеры должны быть такими, чтобы она не выходила за диаметральный габарит компрессора или турбины.

3. Схема и принцип действия ступени турбины.

Газовая турбина представляет собой лопаточную машину, в которой потенциальная энергия сжатого и подогретого газа преобразуется в механическую работу на валу турбины с помощью вращающегося ротора, снабженного лопатками.

Газовая турбина обладает рядом ценных качеств, основными из которых являются: высокая экономичность, возможность получения большой мощности, малые габаритные размеры и масса, удобство эксплуатации.

Турбина состоит из соплового аппарата (СА) и рабочего колеса (РК).

Рис. 4.2. Схема ступени газовой турбины:

0-0 – сечение на входе СА; 1-1 сечение на выходе из СА (на входе в РК); 2-2 – сечение на выходе из РК; р0, Т0, с0 – давление, температура, скорость перед СА; р1, Т1, с1 – давление, температура, скорость за РК; w1 – относительная скорость на входе в РК; w2 – относительная скорость на выходе из РК

На рис. 4.2 приняты следующие обозначения: сечение 0-0 на входе в сопловой аппарат, сечение 1-1 на выходе из соплового аппарата (на входе в рабочее колесо) и сечение 2-2 на выходе из рабочего колеса. Параметрам газа в различных сечениях присвоены соответствующие индексы.

Состояние газа на входе в сопловой аппарат турбины характеризуется давлением р0 и температурой Т0. Лопатки соплового аппарата образуют криволинейные каналы, сужающиеся от сечения 0-0 к сечению 1-1. Течение газа на этом участке сопровождается падением давления и температуры и соответствующим увеличением скорости. Направление потока на выходе из соплового аппарата в основном определяется направлением выходных кромок лопаток и составляет с плоскостью вращения колеса угол α1. Таким образом, в сопловом аппарате часть потенциальной энергии газа преобразуется в кинетическую. Одновременно в результате поворота потока обеспечивается его закрутка у входа в рабочее колесо.

Относительная скорость w1 на входе в рабочее колесо определяется из треугольника скоростей как разность векторов с1 и и. Величина и направление относительной скорости при заданных значениях скорости истечения газа из соплового аппарата с1 и угла выхода α1 зависят от окружной скорости и. Чем меньше и, тем больше w1 и меньше β1, и наоборот. От величины угла β, в свою очередь, зависит форма рабочих лопаток, так как для предотвращения срыва потока в колесе входные кромки рабочего колеса должны быть ориентированы по направлению относительной скорости w1. Лопатки рабочего колеса обычно также образуют сужающиеся каналы, поэтому газ продолжает в них расширяться от давления р1 до давления р2. При этом относительная скорость движения газа увеличивается от w1 на входе до w2 на выходе, а температура газа падает от Т1 до Т2. Таким образом, течение газа через сопловой аппарат и лопатки рабочего колеса может рассматриваться как течение через систему неподвижных и вращающихся сопел с увеличением абсолютной скорости в сопловом аппарате и относительной – в рабочем колесе, а также уменьшением давления и температуры в обоих элементах.

При обтекании газом лопаток соплового аппарата и рабочего колеса вследствие поворота потока на вогнутой поверхности лопаток (корытце) образуется повышенное давление, а на выпуклой (спинке) – пониженное.

При повороте потока в канале на частицы газа действуют центробежные силы, стремящиеся отбросить их к вогнутой части лопаток. Равнодействующая сила давлений, действующих на поверхности лопаток, создает крутящий момент, приводящий рабочее колесо во вращение.

Скорость газа в абсолютном движении за рабочим колесом с2 определится как векторная сумма относительной скорости w2 и окружной скорости и. Следует отметить, что скорость с2 значительно меньше с1. Уменьшение абсолютной скорости газа в колесе при одновременном уменьшении давления объясняется тем, что газ совершает внешнюю работу.

Необходимо отметить, что осевую скорость в ступени турбины (в отличие от осевого компрессора) в пределах ступени и от ступени к ступени вдоль оси не уменьшают, а увеличивают. Это вызвано необходимостью частично компенсировать падение плотности при расширении газа и не получить чересчур длинные лопатки, особенно для последней ступени. Увеличение осевой скорости (при прочих равных условиях) осуществляют увеличением α1. Для первой ступени принимают α1 = 16...18°, а для последней 30... 35°. Однако на практике встречаются турбины со значительно меньшими α1 .Так, например, на одноступенчатой турбине высокого давления Е3 фирмы Пратт-Уитни принято α1= 8,74° (ступень турбины сверхзвуковая, πСТ = 4), а на последней ступени четырехступенчатой турбины низкого давления α1 = 19,4°.

Билет 4