Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика._Механика.doc
Скачиваний:
328
Добавлен:
26.03.2016
Размер:
5.46 Mб
Скачать

Литература

  1. Б.Л. ван дер Варден «Математическая статистика» Изд. ИЛ. М., 1960, с. 434.

  2. Зайдель А.Н. «Ошибки измерений физических величин» Изд. «Наука» Ленинград, 1974.

  3. Кассандрова О.Н., Лебедев В.В. «Обработка результатов наблюдений» Изд. «Наука» М., 1970, с. 103.

  4. Колмогоров А.Н. «Основные понятия теории вероятностей» ОНТИ. М., 1936.

  5. Худсон Д. «Статистика для физиков» Изд. «Мир» М., 1967, c.242.

  6. Feldman G.J., Cousins R.D. «Unified approach to the classical statistical analysis of small signals», Phys. Rev. v57, N7 1998, pp. 3873-3889.

Лабораторная работа 1-2 изучение кинематики и динамики поступательного движения на машине атвуда

Цель работы: Экспериментальная проверка основных уравнений и законов поступательного движения тела.

Теория

Простейшей формой движения материи является механическое движение, которое состоит в перемещении тел или их частей друг относительно друга. Перемещения тел мы наблюдаем повседневно в обыденной жизни.

Совокупность тел, выделенная для рассмотрения, называется механической системой. Какие тела следует включить в систему, зависит от характера решаемой задачи.

Движение происходит как в пространстве, так и во времени. Поэтому для описания движения необходимо также определять время.

Совокупность неподвижных друг относительно друга тел, по отношению к которым рассматривается движение, и отсчитывающих время часов образует систему отсчета.

Описать движение тела означает указать для каждого момента времени положение в пространстве и скорость тела. Для того чтобы задать состояние механической системы, нужно указать положения и скорости всех тел, образующих систему. Типичная задача механики заключается в том, чтобы, зная состояние системы в некоторый начальный момент времени , а также законы, управляющие движением,определить состояния системы во все последующие моменты времени .

Отметим, что ни одна физическая задача не может быть решена абсолютно точно. Всегда получают приближенное решение. Степень приближение определяется характером задач, целью, которой хотят достичь. Решая задачу приближенно задачу, пренебрегают некоторыми факторами, которые в данном случае не существенны. Тело, размерами которого в условиях данной задачи можно пренебречь, называется материальной точкой. Одно и тоже тело в одних случаях может быть сочтено за материальную точку, в других же должно рассматриваться как протяженное тело.

Говоря о каком-то теле как о материальной точке, мы абстрагируемся от его размеров. Вторая абстракция, с которой приходится иметь дело в механике, - это абсолютно твердое тело. Абсолютно твердым теломназывается тело, деформациями которого можно в условиях данной задачи пренебречь.

Всякое движение твердого тела можно разложить на два основных вида движения – поступательное и вращательное.

Поступательное движение– это такое движение, при котором любая прямая, связанная с движущимся телом, остается параллельной самой себе. Привращательном движениивсе точки тела движутся по окружностям, центры которых, лежат на одной и той же прямой, называемой осью вращения.

Для того чтобы получить возможность описывать движение количественно, приходится связывать с телами, образующими систему отсчета, какую-либо систему координат (например, декартовая система координат).

Декартову систему координат рассматривают:

В пространстве(трехмерный случай). При этом положение материальной точкиAхарактеризуется тремя координатами:A(x,y,z).

На плоскости(двумерный случай). При этом положение материальной точкиAхарактеризуется двумя координатами:A(x,y).

Движение материальной точки вдоль одной числовой прямой. При этом положение материальной точкиAхарактеризуется только одной координатой:A(x).

Для задания положения материальной точки в пространстве применяют понятиерадиус-вектор, как вектор, проведенный из начала системы координатOв точку нахождения материальной точкиA(рис. 1)

При движении материальной точки в пространстве ее координаты с течением времени меняются. Поэтому положение материальной точки в любой момент времени определяется заданием функций ,,, представляющих собой значения координат в момент времениt. Эти функции являются компонентами радиуса-вектора.

Одним из первых разделов механики является кинематика, изучающая механическое движение тел без выяснения причин, вызывающих данное движение. Рассмотрим основные кинематические понятия траектория, путь и перемещение.

Траектория– линия, описываемая в пространстве движущейся материальной точкой.

Путь ()– расстояние межу двумя любыми точками, измеренное вдоль траектории (длина дуги траектории). Путь является скалярной величиной (рис. 2).

Перемещение ()– вектор, соединяющий две точки траектории (вектор, соединяющий точкиAиB, или разность двух радиусов-векторови):

(1)

где - радиус-вектор для момента времениt,- радиус-вектор для момента времени.

Быстрота изменения положения материальной точки в пространстве с течением времени характеризуется средней и мгновенной скоростями.

Вектор средней скорости равен отношению перемещения к промежутку времени, за которое это перемещение произошло:

(2)

На рисунке 2 показано направление вектора средней скорости, которое совпадает с направлением перемещения .

Средняя скорость прохождения пути равна отношению пути к промежутку времени, за который этот путь пройден (средняя скорость – величина скалярная):

(3)

В момент времени tрадиус-вектор задается тремя функциями:x(t),y(t) иz(t). В момент времениt+tзначения функций станут равными:x(t+t),y(t+t) иz(t+t). Тогда приращения функций запишутся:

(4)

Эти приращения функций представляют собой компоненты вектора перемещения .

Вектор мгновенной скорости материальной точки, направленной по касательной к траектории движения (рис. 2) определяется как

(5)

Скорость частицы может изменяться со временем, как по величине, так и по направлению. Быстрота изменения вектора, как и быстрота изменения любой функции времени, определяется производной векторапоt. Обозначив эту производную буквойa, получим:

(6)

Величина, определяемая формулой (6), называется ускорением частицы.

Если и траектория – прямая линия, то движениеравнопеременное прямолинейное.

Уравнения равнопеременного прямолинейного движенияв векторной форме запишутся следующим образом:

(7)

где – начальное положении материальной точки и– начальная скорость.

В скалярной форме (например, для проекции на ось 0x) уравнения записываются в следующем виде

(8)

Если проекции скорости или ускорения (для равноускоренного движения) соноправлены с осями 0xили 0y, то они считаются положительными; если антинаправлены, то – отрицательны, т.е. берутся со знаком «-».

Если () и траектория – прямая линия, то движениеравномерное прямолинейное.

Уравнения равномерного прямолинейного движенияв векторной форме запишутся следующим образом:

(9)

Уравнения (7) – (9) называются кинематическими уравнениями движения материальной точки. Уравнения движения рассматривают зависимость координат x,y,zот времени. Если из одного уравнения движения выразить времяtи подставить в другое, то получим зависимость одних координат через другие. Геометрическое место последовательных положений материальной точки в пространстве называется траекторией точки. Положение точки задается ее координатамиxиy(для случая плоского движения), которые при движении меняются со временем так что:,.

Эти уравнения определяют закон движения материальной точки и представляют собой параметрические уравнения траектории точки. Выразив tчерезxи подставивt(x) в уравнение, найдем:.

Кинематикадает описание движения тел, не затрагивая вопроса о том, почему тело движется именно так, а не иначе.

Динамикаизучает движение тел в связи с теми причинами (взаимодействиями между телами), которые обуславливают тот или иной характер движения.

В основе так называемой классической или ньютоновской механики лежат три закона динамики, сформулированные Ньютоном в 1687г.

Первый закон Ньютона формулируется следующим образом: всякое тело находится в состоянии покоя или равномерного и прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Первый закон Ньютона выполняется только в инерциальных системах отсчета.

Второй закон Ньютона гласит, что скорость изменения импульса тела равна действующей на тело силе:

(10)

где - импульс тела,- действующая на тело сила.

Уравнение (10) называется уравнением движения тела.

Третий закон Ньютона утверждает, что силы, с которыми действуют друг на друга тела, равны по величине и противоположны по направлению:.

Несмотря на то, что основные уравнения кинематики и динамики прямолинейного движения имеют простую форму и не вызывают сомнения, экспериментальная проверка этих соотношений весьма сложна. Трудности возникают в основном по двум причинам. Во-первых, при достаточно больших скоростях движения тел необходимо с большой точностью измерять время их движения. Во-вторых, в любой системе движущихся тел действуют силы трения и сопротивления, которые трудно учесть с достаточной степенью точности.

Определим, например, время падения тела с высоты h= 1,0 м приgравным 9,8 м/с2:

(11)

Если при выполнении эксперимента по определению gпо времени падения тела с указанной высоты допускается погрешность в измерении времени равная 0,01 с, т. е. возможно получение значений времени 0,46 с или 0,44 с, разброс результатов измерений получается недопустимо большим:g=9,4 – 10,3 м/с2. С целью уменьшения влияния точности измерения времени на результаты измерений можно, например, резко увеличить высоту падения. Но при падении с больших высот достигаются большие скорости движения, что приводит к резкому увеличению сопротивления воздуха, которое трудно учесть.

Трудности рассмотренного опыта связаны с большим значением ускорения свободного падения. Так как ускорение большое, то тело быстро набирает скорость, а при этом или время падения мало и его трудно точно измерить, или сама расчетная формула неточна, т. к. не учитывает трение.

Уменьшить ускорение и одновременно максимально уменьшить силу сопротивления можно с помощью устройства, которое называют машиной Атвуда.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.