Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
молекФизПрактикум.doc
Скачиваний:
318
Добавлен:
26.03.2016
Размер:
1.36 Mб
Скачать

Молекулярно-кинетическая теория идеальных газов

Молекулярно-кинетическая теория описывает поведение и свойства особого идеального объекта, называемого идеальным газом. В основе данной физической модели лежит молекулярное строение вещества. Создание молекулярной теории связано с работами Р. Клаузиуса, Дж. Максвелла, Д. Джоуля и Л. Больцмана.

Идеальный газ. Молекулярно-кинетическая теория идеального газа строится на следующих посылках:

  1. атомы и молекулы можно рассматривать как материальные точки, находящиеся в непрерывном движении;

  2. собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

  3. все атомы и молекулы являются различимыми, то есть существует принципиальная возможность следить за движением каждой частицы;

  4. до столкновения молекул газа между ними отсутствуют силы взаимодействия, а соударения молекул между собой и со стенками сосуда предполагаются абсолютно упругими;

  5. движение каждого атома или молекулы газа описывается законами классической механики.

Законы, полученные для идеального газа можно использовать при изучении реальных газов. Для этого создают экспериментальные модели идеального газа, в которых свойства реального газа близки характеристикам идеального газа (например, при низких давлениях и высоких температурах).

Законы идеального газа

Закон Бойля-Мариотта:

для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная: рV = const, (1.1)

при T = const, m = const.

Кривая, изображающая зависимость между величинами р и V, характеризует свойства вещества при постоянной температуре, и называется изотермой  это гипербола (рис.1.1.), а процесс, протекающий при постоянной температуре, называется изотермическим.

Законы Гей-Люссака:

  1. Объем данной массы газа при постоянном давлении изменяется линейно с температурой

V = V0 (1 + t) при Р = const, m = const. (1.2)

  1. Давление данной массы газа при постоянном объеме изменяется линейно с температурой (закон Шарля ) :

p = p0 (1 + t) при V = const, m = const. (1.3)

В уравнениях (1.2) и (1.3) температура выражена по шкале Цельсия, давление и объем – при 0 С, при этом .

Процесс, протекающий при постоянном давлении, называется изобарным, его можно представить в виде линейной функции (рис. 1.2.).

Процесс, протекающий при постоянном объеме, называется изохорным (рис. 1.3.).

Из уравнений (1.2) и (1.3) следует, что изобары и изохоры пересекают ось температур в точке t = 1/ =  273,15 С. Если перенести начало отсчета в эту точку, то перейдем к шкале Кельвина.

Вводя в формулы (1.2) и (1.3) термодинамическую температуру, законам Гей-Люссака можно придать более удобный вид:

V = V0 (1+t) = = V0 [1+ (T1/)] = =V0T;

p = p0 (1+t) = p0 [1+ (T1/)] = p0T;

при p = const, m = const; (1.4)

при V = const, m = const, (1.5)

где индексы 1 и 2 относятся к произвольным состояниям, лежащим на одной изобаре или изохоре.

Закон Авогадро:

моли любых газов при одних и тех же температурах и давлениях занимают одинаковые объемы.

При нормальных условиях этот объем равен V,0 = 22,4110-3 м3/моль. По определению, в одном моле различных веществ содержится одно и то же число молекул, равное постоянной Авогадро: NA = 6,0221023 моль-1.

Закон Дальтона:

давление смеси разных идеальных газов равно сумме парциальных давлений р1, р2, р3 рn, входящих в нее газов:

р = р1 + р2 + р3 + …+ рn.

Парциальное давление это давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре.

Уравнение состояния идеального газа

(уравнение Клапейрона-Менделеева)

Между температурой, объемом и давлением существует определенная связь. Эта связь может быть представлена функциональной зависимостью:

f (p, V, T) = 0.

В свою очередь каждая из переменных (р, V, T) является функцией двух других переменных. Вид функциональной зависимости для каждого фазового состояния вещества (твердого, жидкого, газообразного) отыскивается экспериментально. Это весьма трудоемкий процесс и уравнение состояния установлено лишь для газов, которые находятся в разреженном состоянии, и в приближенной форме – для некоторых сжатых газов. Для веществ, находящихся не в газообразном состоянии, эта задача до сих пор не решена.

Французский физик Б. Клапейрон вывел уравнение состояния идеального газа, объединив законы Бойля-Мариотта, Гей-Люссака, Шарля:

. (1.6)

Выражение (1.6) и есть уравнение Клапейрона, где В – газовая постоянная. Она различна для разных газов.

Д.И. Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (1.6) к одному молю и использовав молярный объем V. Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем V.. Поэтому постоянная В будет одинаковой для всех идеальных газов. Данная постоянная обычно обозначается R и равна R = 8,31 .

Уравнение Клапейрона-Менделеева имеет следующий вид:

p V. = R T.

От уравнения (1.7) для одного моля газа можно перейти к уравнению Клапейрона-Менделеева для произвольной массы газа:

, (1.7)

где молярная масса (масса одного моля вещества, кг/ моль); m масса газа;  количество вещества.

Чаще пользуются другой формой уравнения состояния идеального газа, вводя постоянную Больцмана: .

Тогда уравнение (1.7) выглядит так:

, (1.8)

где концентрация молекул (число молекул в единице объема). Из этого выражения следует, что давление идеального газа прямо пропорционально концентрации его молекул или плотности газа. При одних и тех же температурах и давлениях все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м3 при нормальных условиях, называется числом Лошмидта:

NL = 2,68 1025 м-3.

Основное уравнение молекулярно-кинетической

теории идеальных газов

Важнейшей задачей кинетической теории газов является теоретический расчет давления идеального газа на основе молекулярно-кинетических представлений. Основное уравнение молекулярно-кинетической теории идеальных газов выводится с использованием статистических методов.

Предполагается, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, и эти соударения абсолютно упругие. На стенке сосуда выделяют некоторую элементарную площадку S и вычисляют давление, которое будут оказывать молекулы газа на эту площадку.

Необходимо учитывать то, что реально молекулы могут двигаться к площадке под разными углами и могут иметь различные скорости, которые к тому же при каждом соударении могут меняться. В теоретических расчетах хаотические движения молекул идеализируется, их заменяют движением вдоль трех взаимно перпендикулярных направлений.

Если рассмотреть сосуд в виде куба, в котором беспорядочно движется N молекул газа в шести направлениях, то несложно заметить, что в любой момент времени вдоль каждого из них движется 1/3 количества всех молекул, причем половина из них (то есть. 1/6 количества всех молекул) движется в одну сторону, а вторая половина (тоже 1/6)  в противоположную. При каждом соударении отдельная молекула, движущаяся перпендикулярно площадке, отражаясь, передает ей импульс, при этом ее количество движения (импульс) меняется на величину

Р1=m0 v – (– m0 v) = 2 m0 v.

Число ударов молекул, движущихся в заданном направлении, о площадку будет равно: N = 1/6 nSv t. При столкновении с площадкой эти молекулы передадут ей импульс

P= N P1 =2 m0 v nS v t= m0 v 2 n S t,

где n – концентрация молекул. Тогда давление, которое газ оказывает на стенку сосуда, будет равно:

р = = n m0 v2 . (1.9)

Однако молекулы газа движутся с различными скоростями: v1, v2, …,vn, поэтому скорости необходимо усреднить. Сумма квадратов скоростей движения молекул газа, делённая на их количество, определяет среднеквадратичную скорость:

.

Уравнение (1.9) примет вид:

(1.10)

выражение (1.10) называется основным уравнением молекулярно-кинетической теории идеальных газов.

Учитывая, что , получим:

р V = N=Е, (1.11)

где Е – суммарная кинетическая энергия поступательного движения всех молекул газа. Следовательно, давление газа прямо пропорционально кинетической энергии поступательного движения молекул газа.

Для одного моля газа m = , и уравнение Клапейрона-Менделеева имеет следующий вид:

p V. = R T ,

и так как из (1.11) следует, что p V. = v кв2 , получим :

RT =  v кв2 .

Отсюда средняя квадратичная скорость молекул газа равна

v кв= ==,

где k = R / NA = 1,3810-23 Дж/К – постоянная Больцмана. Отсюда можно найти среднюю квадратичную скорость молекул кислорода при комнатной температуре – 480 м/с, водорода – 1900 м/с.

Молекулярно-кинетический смысл температуры

Температура является количественной мерой «нагретости» тела. Для выяснения физического смысла абсолютной термодинамической температуры Т сопоставим основное уравнение молекулярно-кинетической теории газов (1.14) с уравнением Клапейрона-Менделеева p V = R T.

Приравняв правые части этих уравнений, найдем среднее значение кинетической энергии 0 одной молекулы ( = N/NA, k = R/NA):

.

Из этого уравнения следует важнейший вывод молекулярно-кинетической теории: средняя кинетическая энергия поступательного движения одной молекулы идеального газа зависит только от температуры, при этом она прямо пропорциональна термодинамической температуре. Таким образом, термодинамическая шкала температур приобретает непосредственный физический смысл: при Т = 0 кинетическая энергия молекул идеального газа равна нулю. Следовательно, исходя из этой теории, поступательное движение молекул газа прекратится и его давление станет равным нулю.

Теория равновесных свойств идеального газа

Число степеней свободы молекул. Молекулярно-кинетическая теория идеальных газов приводит к весьма важному следствию: молекулы газа совершают беспорядочное движение, причем средняя кинетическая энергия поступательного движения молекулы определяется исключительно температурой.

Кинетическая энергия движения молекул не исчерпывается кинетической энергией поступательного движения: она также складывается из кинетических энергий вращения и колебания молекул. Для того, чтобы подсчитать энергию, идущую на все виды движения молекул, необходимо дать определение числу степеней свободы.

Под числом степеней свободы ( i ) тела подразумевается число независимых координат, которые необходимо ввести для определения положения тела в пространстве.

Например, материальная точка обладает тремя степенями свободы, так как ее положение в пространстве определяется тремя координатами:х, у и z. Следовательно, одноатомная молекула обладает тремя степенями свободы поступательного движения.

Двухатомная молекула имеет 5 степеней свободы (рис. 1.4): 3 степени свободы поступательного движения и 2 степени свободы вращательного движения.

Молекулы из трех и более атомов имеют 6 степеней свободы: 3 степени свободы поступательного движения и 3 степени свободы вращательного движения (рис. 1.5).

Каждая молекула газа обладает определенным числом степеней свободы, три из которых соответствуют ее поступательному движению.

Положение о равнораспределении энергии

по степеням свободы

Основной предпосылкой молекулярно-кинетической теории газов является предположение о полной беспорядочности движения молекул. Это относится и к колебательному, и к вращательному движениям, а не только поступательному. Считается, что все направления движения молекул в газе равновероятны. Поэтому можно предположить, что на каждую степень свободы молекулы в среднем приходится одно и то же количество энергии – это есть положение о равнораспределении энергии по степеням свободы. Энергия, приходящаяся на одну степень свободы молекулы, равна:

. (1.12)

Если молекула обладает i степенями свободы, то на каждую степень свободы приходится в среднем:

. (1.13)

Внутренняя энергия идеального газа

Если отнести полный запас внутренней энергии газа к одному молю, то получим ее значение, умножив  на число Авогадро:

. (1.14)

Отсюда следует, что внутренняя энергия одного моля идеального газа зависит только от температуры и числа степеней свободы молекул газа.

распределения Максвелла и Больцмана

Распределение молекул идеального газа по скоростям и энергиям теплового движения (распределение Максвелла). При постоянной температуре газа все направления движения молекул предполагаются равновероятными. В этом случае средняя квадратичная скорость каждой молекулы остаётся постоянной и равна

.

Это объясняется тем, что в идеальном газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям. это распределение подчиняется определенному статистическому закону, который теоретически вывел Дж. Максвелл. Закон Максвелла описывается функцией

,

то есть функция f(v) определяет относительное число молекул , скорости которых лежат в интервале отv до v + dv. Применяя методы теории вероятностей, Максвелл нашел закон распределения молекул идеального газа по скоростям:

. (1.15)

Функция распределения в графическом виде представлена на рис. 1.6. Площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Это значит, что функция f(v) удовлетворяет условию нормировки:

.

Скорость, при которой функция распределения молекул идеального газа по скоростям f (v) максимальна, называется наиболее вероятной скоростью vB.

Значения v = 0 и v = соответствуют минимумам выражения (1.15). Наиболее вероятную скорость можно найти, продифференцировав выражение (1.23) и приравняв его к нулю:

==1,41

При увеличении температуры максимум функции сместится вправо (рис.1.6), то есть при увеличении температуры увеличивается и наиболее вероятная скорость, однако, ограниченная кривой площадь остаётся неизменной. Следует заметить, что в газах и при небольших температурах всегда присутствует небольшое количество молекул, которые движутся с большими скоростями. Наличие таких «горячих» молекул имеет большое значение при протекании многих процессов.

Средняя арифметическая скорость молекулы определяется по формуле

.

Средняя квадратичная скорость

=1,73.

Отношение этих скоростей не зависит ни от температуры, ни от вида газа.

Функция распределения молекул по энергиям теплового движения. Эту функцию можно получить, подставив в уравнение распределения молекул (1.15) вместо скорости значение кинетической энергии:

.

Проинтегрировав выражение по значениям энергии от до, получимсреднюю кинетическую энергию молекулы идеального газа:

.

Барометрическая формула. Распределение Больцмана. При выводе основного уравнения молекулярно-кинетической теории газов и распределения Максвелла молекул по скоростям предполагалось, что на молекулы идеального газа не действуют внешние силы, поэтому молекулы равномерно распределены по всему объему. Однако молекулы любого газа находятся в поле тяготения Земли. При выводе закона зависимости давления от высоты, предполагается, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова:

. (1.16)

Выражение (1.16) называется барометрической формулой. Оно позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, можно найти высоту. Так как h1 – это высота над уровнем моря, где давление считается нормальным, то выражение можно модифицировать:

.

Барометрическую формулу можно преобразовать, если воспользоваться выражением р = nkT:

,

гдеn концентрация молекул на высоте h, m0 gh = П потенциальная энергия молекулы в поле тяготения. При постоянной температуре плотность газа больше там, где меньше потенциальная энергия молекулы. Графически закон убывания числа частиц в единице объема с высотой выглядит, как показано на рис. 1.7.

Для произвольного внешнего потенциального поля запишем следующее общее выражение

,