Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Uch_posobie (1).doc
Скачиваний:
948
Добавлен:
26.03.2016
Размер:
2.5 Mб
Скачать

Лабораторная работа 12 Коррозия металлов

Цель работы: изучить понятия «коррозия металлов», «химическая и электрохимическая коррозия», способы защиты металлов от коррозии.

Задание: провести опыты и выявить влияние образования гальванической пары на процесс растворения металла в кислоте; роль оксидной пленки в ослаблении коррозии; защитные свойства катодных и анодных покрытий. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Коррозией называется самопроизвольное разрушение металлов под воздействием окружающей среды. По механизму протекания коррозионного процесса различают химическую и электрохимическую коррозию.

Химической коррозией называется окисление металла, не сопровождающееся возникновением в системе электрического тока. Такой механизм наблюдается при взаимодействии металлов с агрессивными газами при высокой температуре (газовая коррозия) и жидкими неэлектролитами (коррозия в неэлектролитах).

Электрохимической коррозией называется разрушение металла в среде электролита, сопровождающееся возникновением внутри системы электрического тока. Электрохимическая коррозия протекает по механизму действия гальванического элемента. На поверхности металла одновременно протекают два процесса:

анодный – окисление металла:

М – nē → Mn+ ,

катодный – восстановление окислителя:

Ox + nē → Red.

Наиболее распространенными окислителями при электрохимической коррозии являются молекулы O2 воздуха и ионы H+ электролита. Восстановление на катоде молекул О2 и ионов Н+ протекает по уравнениям:

O2 + 2H2O + 4= 4OH − в щелочной или нейтральной среде,

2H+ + 2=H2 − в кислой среде.

Металлы, применяемые в технике, содержат примеси других металлов, поэтому при соприкосновении с раствором электролита на их поверхности образуется большое количество непрерывно действующих микрогальванических элементов. Разрушается более активный металл. Например, при контакте железа с медью в присутствии электролита – соляной кислоты – возникает гальванический элемент

(анод) (−) Fe | HCl | Cu (+) (катод)

и происходит электрохимическая коррозия.

На аноде идет процесс окисления: Fe0 − 2ē = Fe2+

На катоде – процесс восстановления: 2H+ + 2ē = H2

В результате железо разрушается в месте контакта, а на меди выделяется водород.

При контакте железа с медью во влажном воздухе образуется гальванический элемент (−) Fe | H2O, О2 | Cu (+) и процесс коррозии выражается уравнениями:

на аноде: Fe0 − 2ē = Fe2+

на катоде: O2 + 2H2O + 4ē = 4OH

2Fe + O2 + 2H2O = 2Fe(OH)2

Под влиянием кислорода воздуха гидроксид железа (II) окисляется по уравнению: 4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3. Далее Fe(OH)3 частично теряет воду и превращается в ржавчину.

Одним из важнейших методов защиты металлов от коррозии являются защитные покрытия металлов, которые изолируют металл от внешней среды и могут быть неметаллическими (лаки, краски, эмали) и металлическими. Различают катодные и анодные металлические покрытия. Покрытие защищаемого металла менее активным металлом называется катодным, например, луженое железо. Покрытие защищаемого металла более активным называется анодным, например, оцинкованное железо. В случае нарушения целостности покрытий и наличия раствора электролита разрушается более активный металл. Так, в случае хромированного железа (анодное покрытие) будет разрушаться хром:

(−) Cr | HCl | Fe (+)

на аноде: Cr0 − 3ē = Cr3+

на катоде: 2H+ + 2ē = H2

В случае никелированного железа (катодное покрытие) разрушается железо:

(−) Fe | HCl | |Ni (+)

на аноде: Fe0 − 2ē = Fe2+

на катоде: 2H+ + 2ē = H2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]