Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОНХимияПлакидкин.doc
Скачиваний:
622
Добавлен:
25.03.2016
Размер:
26.53 Mб
Скачать

Ионная связь

Ионная связь осуществляется в результате образования и электростатического взаимодействия противоположно заряженных ионов. Она является предельным случаем полярной ковалентной связи, т.к. при соединении атомов с малой электроотрицательностью (щелочные и щелочно-земельные металлы) и высокой (фтор, кислород, азот) полярность молекулы возрастает настолько, что электронная плотность сильно смещена к атому неметалла и возникают катионы металла и анионы неметалла. Чисто ионная связь не существует, т.к. электронная плотность в молекуле делокализована. Кроме того, полярность молекулы уменьшается в результате поляризации. Даже соединение с максимальной разницей в электроотрицательности атомов ‑ CsFобладает 90% степенью ионности.

Ионная связь ненаправлена и ненасыщенна. Так как электрическое поле иона имеет сферическую симметрию, то в отличие от ковалентной связи ионная связь не обладает направленностью. Взаимодействие двух противоположно заряженных ионов не приводит к полной взаимной компенсации их полей, они сохраняют способность притягивать и другие ионы, поэтому ионная связь не обладает насыщаемостью. Каждый ион в молекуле с ионной связью окружен ионами противоположного знака, число которых определяется размерами и силой отталкивания одноименно заряженных ионов. Соединения с ионной связью представляют собой кристаллические вещества. Ионный кристалл можно рассматривать как гигантскую молекулу, состоящую из очень большого числа ионов, в них нет отдельных молекул. Эти вещества при растворении в полярных растворителях распадаются на ионы, а в неполярных не растворяются. Ионные молекулы можно обнаружить только в парах ионных соединений (требуется высокая температура), при этом в парах присутствуют и различные ассоциаты. Например, в парах хлорида натрия присутствуют:NaCl, (NaCl)2, (NaCl)3и ионы (Na2Cl)+, (NaCl2)-и т.д. Энергию кристаллической решетки обычно определяют экспериментально.

Степень ионности рассчитывается по формулам: ,

где: ω– степень окисления;эксп.– экспериментальный дипольный момент;

l– расстояние между ионами;qэфф.иqфор.– практические и теоретические заряды на ионах.

Металлическая связь

Металлы отличаются от всех остальных элементов высокой пластичностью, электро- и теплопроводностью. Эти свойства, а также и многие другие – ковкость, металлический блеск и т.п. обусловлены особым видом связи между атомами металла -- металлической связью. Необходимо отметить, что свойства, присущие металлам, проявляются только в конденсированном состоянии. Например, серебро в газообразном состоянии не обладает физическими свойствами металлов. У всех металлов дефицит (мало) валентных электронов, поэтому при образовании связи они все становятся общими, принадлежащими всему кристаллу металла. Другой особенностью кристаллической структуры металлов являются высокие координационные числа (8-12), свидетельствующие о большой плотности упаковки в кристаллических ячейках.

Для объяснения высокой электропроводности металлов издавна полагали, что внутри металлов имеются «почти свободно движущиеся электроны», которые переносят электричество. Наиболее простая модель строения металлов предполагала, что кристаллическая решетка металлов состоит из положительных ионов, окруженных свободными электронами, движение электронов происходит хаотически, подобно молекулам газа. Однако такая модель, качественно объясняя многие свойства металлов, при количественной проверке оказывается недостаточной. Так атомная теплоемкость металла, рассчитанная в соответствии с представлением о свободных электронах, должна составлять 9/2R. Экспериментальные значения (правило Дюлонга и Пти) равны примерно 6/2R.

Дальнейшая разработка теории металлического состояния привела к созданию зонной теории металлов, которая основывается на представлениях квантовой механики.

Характерным механическим свойством металлов является пластичность, обусловленная особенностями внутреннего строения их кристаллов. Под пластичностью понимают способность тел под действием внешних сил подвергаться деформации, которая остается и после прекращения внешнего воздействия. Это свойство металлов позволяет придавать им различную форму при ковке, прокатывать металл в листы или вытягивать в проволоку.

Пластичность металлов обусловлена тем, что при внешнем воздействии слои ионов, образующих кристаллическую решетку, сдвигаются относительно друг друга без разрыва. Это происходит в результате того, что переместившиеся электроны благодаря свободному перераспределению продолжают осуществлять связь межу ионными слоями. При механическом воздействии на твердое вещество с атомной решеткой смещаются отдельные ее слои и сцепление между ними нарушается из-за разрыва ковалентных связей.

Все отличительные общие физические свойства металлов объясняются современной теорией металлического состояния вещества и обусловлены двумя особенностями: особой кристаллической решеткой металла и особым видом связи.