Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bairova.doc
Скачиваний:
138
Добавлен:
25.03.2016
Размер:
2.5 Mб
Скачать

4.5. Расчёт параметров токов короткого замыкания для последующих точек кз

Расчет токов КЗ для остальных точек выполним на ЭВМ с помощью программы GTCURR[20, 26].

Результаты расчётов сверхпереходного и ударного токов для каждой точки представим в виде снимков окна программы.

Рис. 27. Результаты расчётов токов короткого замыкания для точки K-1

Как видим из таблицы и из рисунка выше, результаты ручного и компьютерного расчетов токов КЗ для точки K-1 получаются достаточно близкими. Полного совпадения результатов нет в силу особенностей работы программы (учёт активного сопротивления элементов и т. д.).

Для выбора электрооборудования необходимо знать токи короткого замыкания не только в начальный момент времени и через 0,01 с после возникновения КЗ (ударный ток), но и по прошествии некоторого времени (к моменту отключения 0,045 с). Также необходимо определить интеграл Джоуля.

Несмотря на то, что токи КЗ для точки K-1 были рассчитаны вручную, воспользуемся данными, полученными при помощи программыGTCURR.

По кривым из [23] стр. 113 для трансформаторов с тиристорной системой самовозбуждения для момента времени 0,045 с при найденной удалённости КЗ находим значение . Тогда ток от автотрансформатора Т1 (или Т2) к моменту отключения:

.

Рассчитаем эквивалентную постоянную времени для удалённых источников, зная величины сверхпереходного и ударного токов:

,

тогда:

.

Апериодическая составляющая тока КЗ от автотрансформатора Т1 (или Т2) к моменту отключения:

.

Для системы согласно [2] обычно принимается . Поэтому.

Постоянная времени затухания апериодической составляющей для системы по [23], стр. 110 равна 0,04 с. Тогда:

.

Теперь определим интеграл Джоуля от каждой ветви, примыкающей к точке КЗ.

Для зоны РУ 110-220 кВ согласно [23], стр. 153 время отключения примем равным .

Тогда интеграл Джоуля от системы:

.

Для автотрансформаторов Т1 и Т2, согласно проведённым ранее расчётам, короткое замыкание является близким, поэтому интеграл Джоуля определяется по формуле:

Для остальных источников КЗ является удалённым, поэтому:

.

Рис. 28. Результаты расчётов токов короткого замыкания для точки K-2

Для точки K-2 все расчёты аналогичны приведённым ранее, поэтому комментарии давать не будем. Короткое замыкание будем считать удалённым относительно всех генераторов. Таким образом, токи к моменту отключения будут найдены приближённо с некоторым запасом. Время отключения с учётом предполагаемых к установке выключателей будет также составлять 0,045 с (подробнее о выборе выключателей см. далее).

;

;

;

.

;

;

;

.

Рис. 29. Результаты расчётов токов короткого замыкания для точки K-3

При расчёте тока от генератора G2 при КЗ в точкеK-3 рассчитаем базисный ток и приведём сверхпереходной ток от генератора к базисному:

.

Оцениваем электрическую удаленность генератора от точки КЗ:

.

Собственное время отключения предполагаемых к установке генераторных выключателей составляет 0,04 с, поэтому .

По кривым из [23], стр. 113 для генераторов с тиристорной системой самовозбуждения для момента времени 0,05 с при найденной удалённости КЗ находим значение . Тогда ток от генератораG2 к моменту отключения:

.

Апериодическая составляющая тока КЗ от генератора G2 к моменту отключения:

.

Интеграл Джоуля от генератора даже при КЗ на выводах генератора можно определять по той же формуле, что была приведена ранее. Согласно [5], стр. 137 и [23], стр. 140 значение интеграла Джоуля при этом будет несколько завышено, но проводники и аппараты, выбираемые в данном присоединении по условиям длительного режима и электродинамической стойкости, имеют значительные запасы по термической стойкости. Кроме того, методика определения интеграла Джоуля для периодической и апериодической составляющих тока КЗ даёт значение теплового импульса только в месте короткого замыкания, которое может быть использовано только для выбора токопроводов. При выборе генераторного выключателя и разъединителя необходимо знать тепловой импульс от генератора и суммарный тепловой импульс от всех остальных источников и производить проверку аппаратов по наибольшему из этих значений.

Для генераторов мощностью более 60 МВт время отключения согласно [23], стр. 153 принимается равным 4 с, по времени действия резервной защиты. Относительный импульс квадратичного тока от генератора по [29], стр. 40 равен . Тогда:

.

Остальные источники, питающие точку КЗ, можно считать источниками бесконечной мощности, поэтому:

;

;

;

.

Рис. 30. Результаты расчётов токов короткого замыкания для точки K-4

Расчёты тока от генератора G4 полностью аналогичны расчётам для генератораG2 в точкеK-3:

;

;

.

Расчеты тока от трансформатора блока Т3:

;

;

;

.

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]