Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
233
Добавлен:
23.03.2016
Размер:
670.72 Кб
Скачать

Руководство к лабораторной работе 307 дифракция света

В однородной среде световые лучи распространяется прямолинейно. Если на их пути имеется препятствие, то может наблюдаться явление дифракции – отклонение света от прямолинейного распространения. Свет, огибая препятствия, попадает в область геометрической тени. Дифракция происходит в том случае, если размеры препятствия или отверстий приблизительно равны длине световой волны.

1. Принцип Гюйгенса-Френеля

Этот принцип представляет собой метод решения задач о распространении световых волн. Принцип Гюйгенса гласит, что каждая точка поверхности, до которой дошло волновое возбуждение в данный момент, становится источником вторичных элементарных сферических

Рис.1 Рис.2

волн. Огибающая этих волн будет волновой поверхностью в следующий момент времени (рис.1). Обратные элементарные волны не должны приниматься во внимание. Принцип Гюйгенса позволяет качественно объяснить явление дифракции (рис.2), но не дает возможности рассчитать распределение интенсивности дифрагированных лучей. Френель развил и дополнил принцип Гюйгенса. По Френелю, волновые возмущения в любой точке пространства можно рассматривать как результат интерференции вторичных волн от некоторых фиктивных когерентных источников, на которые разбивается волновая поверхность.

Итак, анализ явления дифракции света осуществляется на основе принципа Гюйгенса и принципа интерференции вторичных волн. В таком объединенном виде эти принципы получили общее название принципа Гюйгенса-Френеля. Рассмотрим его несколько подробнее. Пусть – (рис.З) – сферический фронт волны, распространяющейся от некоторого точечного источникаО. Амплитуда светового колебания в точкеРможет быть найдена из следующих соображений. Каждый элемент поверхностиявляется фиктивным источником вторичной сферической волны, амплитуда которой пропорциональна площадиэлемента поверхности. Поскольку амплитуда сферической волны убывает обратно пропорционально расстоянию от источника, световое возмущение в точкеРопределяется выражением

(1)

где и– амплитуда и фаза колебаний на волновой поверхности;– волновое число;– длина радиуса-вектора, проведенного от элемента поверхностидо точкиР. Коэффициентубывает с увеличением угламежду нормальюки направлением

Рис.3.

радиуса-вектора , причем. Результирующее колебание в точке Р определяется как результат суперпозиции колебаний (1), пришедших от всех элементов волновой поверхности. т.е.

(2)

Эту формулу следует рассматривать как аналитическое выражение принципа Гюйгенса-Френеля.

2. Метод зон Френеля

Вычисление результирующего колебания по формуле (2) является трудной задачей. Однако в тех случаях, когда волновая поверхность является симметричной относительно луча ОР, нахождение амплитуды результирующего колебания в точке Р может быть осуществлено приближенно, простым суммированием по методу зон Френеля. Френель предложил разбить волновую поверхность на зоны – концентрические участки сферической поверхности с центром в точке L, расстояние от которых до точки наблюдения изменяется от зоны к зоне на. Тогда световые возмущение, пришедшие в точку Р от двух соседних зон, будут иметь противоположные фазы. Площади зон приблизительно одинаковы (т.е. площадь зоны не зависит от ее номера). С ростомувеличится уголи уменьшится коэффициент, следовательно, и амплитуда колебаний, приходящих в точкуР(рис.4):.Ввиду противоположности фаз колебаний, приходящих из двух соседних зон, амплитуда суммарного колебания, вызванного действием всех зон открытого фронта волны, будет выражаться соотношением

(3)

Представим амплитуды колебаний, приходящих от всех нечетных зон, в виде суммы двух слагаемых:

и т.д.

Рис.4

Тогда уравнение (3) будет иметь вид

Приближенно можно считать, что амплитуды колебаний от четных зон равны полусумме амплитуд колебаний от двух соседних нечетных зон. Тогда все выражения в скобках обращаются в нуль. Оставшаяся часть от амплитуды последней зоны пренебрежимо мала, и. Следовательно, амплитуда А световой волны в точкеРот полностью открытого фронта волны равна половине амплитудыот первой (центральной) зоны Френеля. Значение этой амплитуды почти не зависит от положения точкиР. Так как размер первой зоны Френеля не превышает долей миллиметра, можно считать, что свет распространяется по узкому каналу, т.е. прямолинейно. Рассмотрим теперь дифракцию от сферического фронта волны, частично закрытого экраном (рис.5). Если на этом отверстии укладывается только первая зона, то амплитуда колебаний в точкеРбудет равна. Если на отверстии укладываются две зоны, то амплитуда колебаний близка к нулю. Ёслв в отверстии укладываются три зоны, то амплитуда становится приблизительно равной, так как амплитуды от первых двух зон взаимно погашаются. Итак, если в отверстии укладывается четное число зон,. то амплитуда световых колебаний в точкеРминимальна, если укладывается нечетное число зон, то амплитуда колебаний максимальна. Таким образом, если отверстие постепенно увеличивается, то в точкеРпроисходит чередование максимумов и минимумов амплитуды световых колебаний.

Рис.5

Соседние файлы в папке ОПТИКА