Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

fizika / Теория,физика (2)

.docx
Скачиваний:
43
Добавлен:
19.03.2016
Размер:
28.3 Кб
Скачать

1. Координационная теория Вернера

Теория координационных соединений, предложенная А. Вернером в 1893 году, до сих пор является основной теорией координационных соединений (для комплексов определенного вида). Основыне положения:

1. Большинство элементов проявляет два типа валентности – главную и побочную.

2. Атом элемента стремится насытить не только главные, но и побочные валентности.

3. Побочные валентности атома строго фиксированы в пространстве и определяют геометрию комплекса и его различные свойства.

Cостав

Комплексное соединение — химическое вещество, в состав которого входят комплексные частицы. В настоящее время строгого определения понятия «комплексная частица» нет. Обычно используется следующее определение.

Комплексная частица — сложная частица, способная к самостоятельному существованию в кристалле или растворе, образованная из других, более простых частиц, также способных к самостоятельному существованию. Иногда комплексными частицами называют сложные химические частицы, все или часть связей в которых образованы по донорно-акцепторному механизму.

Комплексообразователь — центральный атом комплексной частицы. Обычно комплексообразователь — атом элемента, образующего металл, но это может быть и атом кислорода, азота, серы, йода и других элементов, образующих неметаллы. Комплексообразователь обычно положительно заряжен и в таком случае именуется в современной научной литературе металлоцентром; заряд комплексообразователя может быть также отрицательным или равным нулю.

Лиганды — атомы или изолированные группы атомов, располагающиеся вокруг комплексообразователя. Лигандами могут быть частицы, до образования комплексного соединения представлявшие собой молекулы (H2O, CO, NH3 и др.), анионы (OH−, Cl−, PO43− и др.), а также катион водорода H+.

Внутренняя сфера комплексного соединения — центральный атом со связанными с ним лигандами, то есть, собственно, комплексная частица.

Внешняя сфера комплексного соединения — остальные частицы, связанные с комплексной частицей ионной или межмолекулярными связями, включая водородные.

Координационный полиэдр — воображаемый молекулярный многогранник, в центре которого расположен атом-комплексообразователь, а в вершинах — частицы лигандов, непосредственно связанные с центральным атомом.

Координационное число (КЧ) — число связей, образуемых центральным атомом с лигандами. Для комплексных соединений с монодентантными лигандами КЧ равно числу лигандов, а в случае полидентантных лигандов — числу таких лигандов, умноженному на дентатность.

Классификация: По заряду комплекса

1) Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул (H2O, NH3 и др.).

2) Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы.

3) Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а также при одновременной координации вокруг положительного иона — комплексообразователя отрицательных ионов и молекул.

По числу мест, занимаемых лигандами в координационной сфере

1) Монодентатные лиганды. Такие лиганды бывают нейтральными (молекулы Н2О, NH3, CO, NO и др.) и заряженными (ионы CN−, F−, Cl−, OH−, SCN−, S2O32− и др.).

2) Бидентатные лиганды. Примерами служат лиганды: ион аминоуксусной кислоты H2N — CH2 — COO−, оксалатный ион −O — CO — CO — O−, карбонат-ион СО32−, сульфат-ион SO42−.

3) Полидентатные лиганды. Например, комплексоны — органические лиганды, содержащие в своём составе несколько групп −С≡N или −COOH (этилендиаминтетрауксусная кислота — ЭДТА). Циклические комплексы, образуемые некоторыми полидентатными лигандами, относят к хелатным (гемоглобин и др.).

1)

Дисперсная

фаза

Дисперсионная

среда

Условное

обозначение

Примеры дисперсных систем

Жидкость

Газ

ж/г

Туман, облака, жидкие аэрозоли

Твердое тело

Газ

т/г

Дым, пыль, твердые аэрозоли

Газ

Жидкость

г/ж

Пены, газовые эмульсии

Жидкость

Жидкость

ж/ж

Эмульсии (молоко, латекс)

Твердое тело

Жидкость

т/ж

Суспензии, коллоидные растворы, гели, пасты

Газ

Твердое тело

г/т

Твердые пены, пористые тела (пенопласты, силикагель, пемза)

Жидкость

Твердое тело

ж/т

Жемчуг, опал

Твердое тело

Твердое тело

т/т

Цветные стекла, сплавы

По степени дисперсности выделяют обычно следующие классы дисперсных систем:

Грубодисперсные системы - системы, размер частиц дисперсной фазы в которых превышает 10'7 м.

Коллоидные системы - системы, размер частиц дисперсной фазы в которых составляет 10'7 - 10'9 м. Коллоидные системы характеризуются гетерогенностью, те. наличием поверхностей раздела фаз и очень большим значением удельной поверхности дисперсной фазы. Это обусловливает значительный вклад поверхностной фазы в состояние системы и приводит к появлению у коллоидных систем особых, присущих только им, свойств.

3) Наиболее распространенными методами очистки коллоидных систем являются диализ, электродиализ и ультрафильтрация, основанные на свойстве некоторых материалов – т.н. полупроницаемых мембран (коллодия, пергамента, целлофана и т.п.) – пропускать ионы и молекулы небольших размеров и задерживать коллоидные частицы. Все полупроницаемые мембраны представляют собой пористые тела, и непроницаемость их для коллоидных частиц обусловлена тем, что коэффициент диффузии для коллоидных частиц значительно (на несколько порядков) меньше, чем для ионов и молекул, имеющих намного меньшие массу и размеры.Удаление из коллоидных растворов низкомолекулярных примесей, которые часто обладают астабилизирующим действием, может быть осуществлено с помощью диализа, электродиализа и ультрафильтрации.Диализ – самый простой метод очистки коллоидных систем. Простейший диализатор представляет собой мешочек из полупроницаемого материала, в который заливается диализируемая жидкость. Мешочек опускается в сосуд с водой. При диализе растворенное кристаллическое вещество проходит через мембрану, а коллоидные частицы, неспособные проникать через полупроницаемую перегородку, остаются в виде очищенного коллоидного раствора. Природа перегородки может быть различной (бычий пузырь, пергамент, коллодий, целлофан и др.) Электродиализ – усложненный вариант диализа. Если примеси являются электролитами, их переход через перегородку может быть ускорен путем наложения на диализируемую жидкость электрического поля. Электродиализ целесообразен при небольших концентрациях примесей в коллоидном растворе (при больших концентрациях происходит сильный разогрев золя). Ультрафильтрация – диализ, проводимый под давлением. Ультрафильтрация чаще используется не для очистки коллоидных растворов, а для их концентрирования. При ультрафильтрации происходит лишь повышение концентрации дисперсной фазы, а состав дисперсионной среды остается практически постоянным. Однако если после частичной ультрафильтрации полученный золь разбавить чистым растворителем до прежнего содержания дисперсной фазы, он будет содержать меньше низкомолекулярных продуктов. Гемодиализ (от гемо- и др.-греч. διάλυσις — разложение, отделение) — метод внепочечного очищения крови при острой и хронической почечной недостаточности. Во время гемодиализа происходит удаление из организма токсических продуктов обмена веществ, нормализация нарушений водного и электролитного балансов.

2)Конденсационные методы основаны на образовании новой фазы в условиях пересыщенного состояния веществ; при этом система из гомогенной превращается в гетерогенную. Конденсационный процесс включает в себя две стадии: 1)образование центров конденсации (зародышей); 2)рост зародышей. Доказано, что самопроизвольное образование зародышей за счет удачного столкновения молекул маловероятно. Зародыши образуются на уже имеющихся поверхностях раздела (пылинки или другие чужеродные частицы). Рост зародышей происходит в результате отложения их на поверхности вещества из пересыщенной системы. Размер образующихся частиц коллоидной системы и полидисперсность этой системы зависит от соотношения скоростей образования зародышей и их роста. Для образования монодисперсной коллоидной системы скорость образования зародышей (v1) должна быть велика, а скорость их роста (v2) мала. Диспергационные методы основаны на измельчении (диспергировании) грубых частиц и распределении их в объеме дисперсионной среды. В зависимости от агрегатного состояния дисперсной фазы диспергирование достигается: 1) в случае твердой фазы – механическим измельчением с последующим перемешиванием в жидкой среде или распылением в газовой; 2) в случае жидкой фазы – интенсивным перемешиванием или разбрызгиванием с помощью специальных устройств;3) в случае газовой фазы - барботажем через слой жидкости. Метод пептизации – переход в коллоидный раствор осадков, образующихся при коагуляции. Пептизация может происходить в результате промывания осадка или под действием специальных веществ – пептизаторов. Пептизация происходит за счет удаления из осадка коагулирующих ионов или в результате адсорбции пептизатора коллоидными частицами осадка.Явление пептизации имеет большое значение в технике при переведении различных осадков в коллоидные растворы. Однако иногда оно играет отрицательную роль, затрудняя технологические процессы.

4)Бро́уновское движе́ние —беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения. Диффу́зия— процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму[1]. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (по градиенту концентрации). О́смос — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества (меньшей концентрации растворителя).Седимента́ция (осаждение) — оседание частиц дисперсной фазы в жидкости или газе под действием гравитационного Скорость седиментации зависит от массы, размера, формы и плотности вещества частицы, вязкости и плотности среды, а также от ускорения силы тяжести и действующих на частиц центробежных сил.

5)Электрофорез — это электрокинетическое явление перемещения частиц дисперсной фазы (коллоидных или белковых растворов) в жидкой или газообразной среде под действием внешнего электрического поля. Различают две разновидности электрофореза: катафорез — когда обрабатываемая поверхность имеет отрицательный электрический заряд и анафорез — когда заряд поверхности положительный. В медицине: Лечебное вещество наносится на прокладки электродов и под действием электрического поля проникает в организм через кожные покровы (в терапии, неврологии, травматологии и др.) или слизистые оболочки (в стоматологии, ЛОР, гинекологии и др.) и влияет на физиологические и патологические процессы непосредственно в месте введения. Электрический ток также оказывает нервно-рефлекторное и гуморальное действие. Электроосмос — это движение жидкости через капилляры или пористые диафрагмы при наложении внешнего электрического поля. Электроосмос — одно из основных электрокинетических явлений.Явление электроосмоса используется в физиологических экспериментах для введения веществ через микроэлектрод внутрь отдельной клетки. Потенциал седиментации - возниквновение разности потенциалов при оседании частиц ДФ, за счет образования дзета-потенциала.

6)КИНЕТИЧЕСКАЯ УСТОЙЧИВОСТЬ - устойчивость коллоидных систем к оседанию. Определяется способностью частиц к броуновскому движению.В качестве меры кинетической устойчивости принимается гипсометрическая высота, т.е. высота, на которой частичная концентрация уменьшается в 2 раза. АГРЕГАТИВНАЯ УСТОЙЧИВОСТЬ - способность системы к сохранению постоянной дисперсности. Коагуляция — это процесс уменьшения степени дисперсности и числа частиц дисперсной системы путем слипания первичных частиц. В результате коагуляции обычно происходит выпадение (седиментация) дисперсной фазы или хотя бы изменение свойств первичной дисперсной системы. Порог коагуляции - минимальная концентрация электролита, при которой начинается коагуляция. Правило Шульце — Гарди: коагулирующим действием обладает тот ион электролита, который имеет заряд, противоположный заряду гранулы; коагулирующее действие тем сильнее, чем выше заряд иона-коагулятора (правило значности).

Комплексные соединения

  1. Координационная теория А.Вернера. Состав и классификация комплексных соединений.

Свойства коллоидных растворов

  1. Классификация коллоидных растворов по агрегатному состоянию дисперстной фазы и дисперсионной среды. Примеры.

  2. Охарактеризовать методы получения коллоидных растворов.

  3. Методы очистки коллоидных растворов. Схема диализа. Гемодиализ.

  4. Молекулярно-кинетические свойства коллоидных растворов.

  5. Электрокинетические свойства коллоидных растворов. Применение электрофореза в медицине.

  6. Факторы устойчивости коллоидных растворов. Коагуляция. Порог коагуляции. Правило Шульце-Гарди.

Соседние файлы в папке fizika