Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
76
Добавлен:
22.01.2014
Размер:
2.56 Mб
Скачать

Электролиз

Электролизом называют окислительно-восстановительные реакции, протекающие на электродах при прохождении электрического тока через растворы или расплавы электролитов.

При электролизе электрод, соединенный с отрицательным полюсом внешнего источника постоянного тока, называется катодом (на нем идет восстановление), соединенный с положительным полюсом источника тока – анодом (на нем идет окисление).

В любом растворяемом в воде электролите под влиянием полярных молекул воды или под влиянием нагрева безводного электролита наблюдается процесс диссоциации его молекул на ионы. Поэтому при погружении в электролит электродов, соединенных с источником тока, происходит направленное перемещение ионов: катионов (положительно заряженных ионов) к катоду, анионов (отрицательно заряженных ионов) - к аноду. Например, при электролизе раствора или расплава хлорида натрия (NaCl) ионы Na+ перемещаются к катоду ), а ионы Cl- к аноду+).

Различают растворимые и нерастворимые аноды. К первым относятся аноды, изготовленные из угля, графита или благородных металлов (золота, платины, палладия и т.п.). В этом случае к анодам перемещаются анионы кислотных остатков, и протекает соответствующий окислительный процесс. Например:

К растворимым анодам относятся аноды, изготовленные из любых металлов, кроме благородных. В этом случае происходит окисление (растворение) самого анода. Например, на медном аноде протекает следующий процесс:

Для решения вопроса о составе полученных при электролизе продуктов необходимо учесть порядок восстановления катионов на катоде и анионов на аноде. Восстанавливающийся на катоде катион называется окислителем, окисляющийся анион – восстановителем.

Руководствуясь вторым началом термодинамики, таблицей стандартных электродных потенциалов металлов и ее свойствами, утверждающими, что окислительная способность катионов возрастает сверху вниз, а восстановительная способность атомов металлов – снизу вверх, в простейших случаях можно установить следующий порядок восстановления катионов на катоде.

В первую очередь восстанавливаются катионы металлов с наиболее положительными значениями стандартных электродных потенциалов (от золота до сурьмы включительно). Например:

Во вторую очередь преимущественно восстанавливаются катионы металлов, занимающих в ряду напряжений среднее положение (от вольфрама до марганца). Например:

Вместо всех остальных активных металлов, расположенных выше марганца, восстанавливаются молекулы воды с образованием на катоде газообразного водорода , что связано с большим перенапряжением восстановления указанных металлов:

Пользуясь рядом стандартных окислительно-восстановительных потенциалов, можно приближённо установить порядок окисления анионов на аноде:

  • В первую очередь окисляются анионы бескислородных кислот(S2-, I, Br, Cl, CN), за исключением иона фтора. Например:

  • Во вторую очередь окисляются молекулы воды по уравнению:

  • В третью очередь окисляются анионы бескислородных кислот. Например:

В случае растворимого анода происходит его окисление (см. выше). В случае протекания вышеперечисленных процессов по второму началу термодинамики система переходит в состояние с минимальным запасом энергии, т.е. её изобарно-изотермический потенциал понижается.

Рассмотрим примеры различных случаев электролиза.

Примеры электролиза растворов электролитов

с нерастворимыми анодами.

  1. Электролиз раствора хлорида меди

Катодный процесс (-)

Анодный процесс (+)

Продукты, образующиеся при электролизе на электродах в результате электрохимических реакций, называются первичными продуктами электролиза.

  1. Электролиз раствора сульфата цинка

Катодный процесс (-)

Анодный процесс (+)

Продукты, образующиеся в растворе у электродов в результате вторичных реакций соединения, называются вторичными продуктами электролиза. В данном примере это образовавшаяся у анода серная кислота. Цинк и кислород, образовавшиеся на электродах, - первичные продукты электролиза.

  1. Электролиз раствора хлорида натрия

Катодный процесс (-)

Анодный процесс (+)

В приведённом примере первичными продуктами электролиза являются газы – водород и хлор, вторичными - гидроксид натрия, образовавшийся у катода.

4. Электролиз раствора сульфата натрия

Катодный процесс (-)

Анодный процесс (+)

В данном случае, как и при электролизе кислородсодержащих кислот и щелочей, образуется 2 первичных (водород и кислород) и 2 вторичных (щелочь и кислота) продукта.

5. Электролиз расплава хлорида натрия

Катодный процесс (-)

Анодный процесс (+)

Примеры электролиза растворов электролитов

с растворимыми анодами.

6. Рафинирование (очистка от примесей) анода, изготовленного из меди с примесями Zn, Sn, Ag.

Электролитом в этом случае служит раствор соли меди, анодом – медь, загрязненная примесями, катодом – графит или пластинка из чистой меди. Прилагаемое из внешнего источника напряжение не превышает стандартный электродный потенциал меди (0,4 В):

Катодный процесс (-)

Анодный процесс (+)

Для растворения серебра величина используемого напряжения недостаточна, и поэтому оно в нейтральном состоянии остается на дне электролизера в виде рыхлого осадка (в шламе). Для осаждения примесей на медном катоде требуется большое перенапряжение, и поэтому они остаются в растворе.

Подобно рафинированию методом электролиза производится покрытие одного металла другим (гальваностегия), и наносятся металлические покрытия на неметаллические полупроводниковые подложки (гальванопластика).

Приведенные примеры находят широкое применение в промышленности.

Законы Фарадея. Выход продукта по току

Количество веществ, образующихся при электролизе на электродах, можно рассчитать, пользуясь двумя законами электролиза, установленными Фарадеем в 1833 г. которые с учетом современной терминологии можно сформулировать в следующем виде:

  1. количество вещества, испытавшего электрохимические превращения на электроде, прямо пропорционально количеству прошедшего электричества;

  2. массы прореагировавших на электродах веществ при постоянном количестве электричества относятся друг к другу как молярные массы их эквивалентов.