Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен билеты.docx
Скачиваний:
18
Добавлен:
13.03.2016
Размер:
296.46 Кб
Скачать

12. 5. 5. Эволюция организмов

Эволюция организмов представляет собой необратимый процесс исторического развития живого. В ходе эволюции (филогенетического развития) происходит последовательная смена видов в результате процесса возникновения новых видов организмов. По своему характеру эволюция является прогрессивной, т.к. организация живых организмов в ходе эволюции прошла ряд ступеней - доклеточных форм, одноклеточных организмов, все усложняющихся многоклеточных вплоть до человека (подробнее об этом см. в следующем разделе). С появлением человека возникла новая форма существования материи - социальная, высшая по сравнению с биологической и не сводимая к ней. В силу этого человек в отличие от всех других видов организмов представляет собой биосоциальное существо (подробнее см. в главе 14).

12. 5. 6. Раздражимость

Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

У животных, не имеющих нервной системы, одноклеточных организмов и некоторых клеток многоклеточных организмов (например, фагоцитов крови) реакции на раздражение выражаются, в частности, в форме двигательных реакций - таксисов, пространственных перемещений. В зависимости от характера раздражения выделяют следующие таксисы: фототаксис, хемотаксис, термотаксис, геотаксис и т.д. У фотосинтезирующих организмов обычно ярко выражен положительный фототаксис (перемещение в зону, наиболее освещенную), гетеротрофным организмам чаще всего свойственен отрицательный фототаксис (избегание освещенных зон). Благодаря хемотаксису, фагоциты крови скапливаются вокруг, например, проникших в организм бактерий и осуществляют свою функцию - фагоцитоз ("пожирание") бактерий.

Растения сравнительно с животными характеризуются малой подвижностью. Большинство движений у растений возникает как ответные реакции на раздражение светом, температурой, гравитацией, химическими факторами. Активные движения у растений наблюдаются двух типов: ростовые и сократительные. Первые движения более медленные, а вторые более быстрые. Ростовые движения связаны с влиянием на растение фактора, действующего в одном направлении. Это вызывает односторонний рост, а как следствие этого возникает изгиб. Такие изгибы органов растения получили название тропизмов. Любой тропизм может быть положительным или отрицательным. Положительным он называется тогда, когда растение изгибается по направлению к раздражителю, а отрицательным, если растение изгибается в противоположную от раздражителя сторону. Так, если поставить проростки растения на окно, то растущие растения изгибаются в одну сторону, по направлению к свету. Это явление получило название положительного фототропизма. Растение изгибается потому, что оно растет в этих условиях неравномерно. Сторона растения, направленная к свету, растет более медленно, чем противоположная. К сократительным движениям у растений можно отнести быстрые движения листьев у мимозы, кислицы, насекомоядных растений (например, росянки) при прикосновении к ним - настии. У мимозы черешки перистых листьев и отдельные листочки имеют особые участки с особыми клетками. При раздражении (прикосновении, толчке, тряске) клетки быстро теряют воду, внутриклеточное давление резко падает, и листочки складываются. В настоящее время высказываются предположения, что механизм быстрых движений связан также с наличием особых сократительных белков.

У многоклеточных животных нервная и мышечная системы обеспечивают ответные двигательные реакции; развиваются формы опосредованной реактивной связи с раздражителем через высшую нервную деятельность и сознание. Благодаря раздражимости достигается уравновешивание организмов с внешней средой: организмы адекватно реагируют на изменения условий окружающей их среды изменениями в функционировании соответствующих элементов биологической системы и самой системы в целом.

Явление раздражимости лежит в основе саморегуляции биологических систем, а в результате существования саморегуляции в системах поддерживается гомеостаз. Гомеостаз - это способность системы противостоять изменениям и сохранить относительное постоянство ее состава и свойств (поддержание определенной температуры тела, постоянство полного состава, осмотического давления и т.д.).

Явление раздражимости лежит в основе адаптаций. Под адаптацией (приспособлением) понимается приспособление организма к непрерывно меняющимся условиям среды. Выделяя раздражимость как специфическое свойство живых организмов, руководствуются следующими соображениями. Неживые тела (системы) реагируют, как правило, на внешние воздействия непосредственно, т.е. независимо от своей предшествующей истории. Живые же организмы реагируют на внешние воздействия уже не только непосредственно, но и основываясь на своей врожденной (генетической) или прижизненной (индивидуальной) "памяти" о всем прошлом опыте реагирования на внешние воздействия. Разумные существа обладают способностью опережающего действия в меняющихся условиях среды, реагируя на внешние воздействия уже не только непосредственно или с учетом имеющейся и накопленной информации, но активно перерабатывая ее в существенно новую информацию.

Заключая раздел, посвященный анализу свойств живых организмов, можно выделить фундаментальные и специфические свойства, совокупность которых характеризует живое: самообновление, самовоспроизведение и саморегуляция, базирующиеся на потоках веществ, энергии и информации. Отличие живых систем от неживых состоит не в присутствии каких-то неуловимых метафизических свойств - все законы физики и химии верны и для живого, - а в высокой структурной и функциональной сложности живых систем. Эта особенность включает все рассмотренные выше признаки и свойства живых организмов и делает состояние жизни качественно новым свойством материи.

4. Центральная догма молекулярной биологии — обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году[1] и приведено в соответствие с накопившимися к тому времени данными в 1970 году[2]. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК > ДНК. В природе встречаются также переходы РНК > РНК и РНК > ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Универсальные способы передачи биологической информации

3 класса способов передачи информации, описываемые догмой

Общие Специальные Неизвестные

ДНК > ДНК РНК > ДНК белок > ДНК

ДНК > РНК РНК > РНК белок > РНК

РНК > белок ДНК > белок белок > белок

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера — ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

• Общий — встречающиеся у большинства живых организмов;

• Специальный — встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента;

• Неизвестные — не обнаружены.

Репликация ДНК (ДНК > ДНК)

ДНК — основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин, затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК > РНК)

Транскрипция — биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК. Транскрипцию осуществляют факторы транскрипции и РНК-полимераза. В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом.

Трансляция (РНК > белок)

Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы) ядерной мембраной, поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

5. Обратная транскрипция — это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.[1]

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов, например, ВИЧ и в случае ретротранспозонов.

Трансдукция (от лат. transductio — перемещение) — процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Общая (неспецифическая) трансдукция

Осуществляется фагом P1, существующим в бактериальной клетке в виде плазмиды, фагами P22 и Mu, встраивающимися в любой участок бактериальной хромосомы. После индуцирования профага с вероятностью в 10?5 на одну клетку возможна ошибочная упаковка фрагмента ДНК бактерии в капсид фага, ДНК самого фага в нём в этом случае нет. Длина этого фрагмента равна длине нормальной фаговой ДНК, его происхождение может быть любым: случайный участок хромосомы, плазмида, другие умеренные фаги.

Попадая в другую бактериальную клетку, фрагмент ДНК может включаться в её геном, обычно путём гомологичной рекомбинации. Перенесённые фагом плазмиды способны замыкаться в кольцо и реплицироваться уже в новой клетке. В ряде случае фрагмент ДНК не встраивается в хромосому реципиента, не реплицируется, но сохраняется в клетке и транскрибируется. Это явление носит название абортивной трансдукции.

[править] Специфическая трансдукция

Наиболее хорошо изучена специфическая трансдукция на примере фага ?. Этот фаг встраивается только в один участок (att-сайт) хромосомы E. coli с определённой последовательностью нуклеотидов (гомологичной att-участку в ДНК фага). Во время индукции его исключение может пройти с ошибкой (вероятность 10?3—10?5 на клетку): вырезается фрагмент тех же размеров что и ДНК фага, но с началом не в том месте. При этом часть генов фага теряется, а часть генов E. coli захватывается им. Вероятность переноса гена в этом случае падает при увеличении расстояния от него до att-сайта.

Для каждого специфически встраивающегося в хромосому умеренного фага характерен свой att-сайт и, соответственно, расположенные рядом с ним гены, которые он способен передавать. Ряд фагов может встраиваться в любое место на хромосоме и переносить любые гены по механизму специфической трансдукции. Кроме того, в хромосоме обычно есть последовательности, частично гомологичные att-участку ДНК фага. При повреждении полностью гомологичного att-сайта можно добиться включения фага в хромосому по этим последовательностям и передачу в ходе специфической трансдукции генов, соседних уже с ними.

Когда умеренный фаг, несущий бактериальные гены, встраивается в хромосому новой бактерии-хозяина, она содержит уже два одинаковых гена — собственный и принесённый извне. Поскольку фаг лишён части собственных генов, часто он не может индуцироваться и размножиться. Однако при заражении этой же клетки «вспомогательным» фагом того же вида, индуцирование дефектного фага становится возможным. Из хромосомы выходят и реплицируются как ДНК нормального «вспомогательного» фага, так и ДНК дефектного, вместе с переносимыми им бактериальными генами. Поэтому около 50% образующихся фаговых частиц несут бактериальную ДНК. Это явление носит название трансдукции с высокой частотой