Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен билеты.docx
Скачиваний:
18
Добавлен:
13.03.2016
Размер:
296.46 Кб
Скачать

73. Фотореактивация,

уменьшение повреждающего действия ультрафиолетового излучения на живые клетки при последующем воздействии на них ярким видимым светом. Ф. открыта в 1948 И. Ф. Ковалевым (СССР), А. Келнером и Р. Дульбекко (США) в результате опытов, проведённых на инфузориях парамециях, коловратках, конидиях грибов, бактериях и бактериофагах. В основе Ф. лежит ферментативное расщепление на мономеры пиримидиновых димеров, образующихся в ДНК под влиянием ультрафиолетового излучения. Ф. возникла в процессе эволюции как защитное приспособление от губительного действия УФ-компонента солнечного излучения и является одной из важнейших форм репарации живых организмов от повреждений их генетического аппарата.

74. Темновая репарация, т. Е. Свойство клеток ликвидировать повреждения днк без участия видимого света. Темновая репарация осуществляется комплексом из пяти ферментов:

• узнающего химические изменения на участке цепи ДНК;

• осуществляющего вырезание поврежденного участка;

• удаляющего этот участок;

• синтезирующего новый участок по принципу комплементарности взамен удаленного фрагмента;

• соединяющего концы старой цепи и восстановленного участка.

При световой репарации исправляются повреждения, возникшие только под воздействием ультрафиолетовых лучей, при темновой - повреждения, появившиеся под влиянием жесткой радиации, химических веществ и других факторов. Темновая репарация обнаружена как у прокариот, так и в клетках эукариот. У последних она изучается в культурах тканей. Вопрос о том, почему одни повреждения репарируются, а другие нет, остается открытым. Если репарация не наступает, то клетка либо гибнет, либо наступает мутация.

75. Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой — делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

77. Существует две разновидности иммунитета: клеточный и гуморальный. Пeрвый из них, в котoром используются Т-лимфоциты (тимус-зaвисимые), обеспечивает противовирусную и противоопухолeвую защиту; вторoй реализуeтся В-лимфоцитами (тимус-незaвисимыми), они вырабатывают антитела. В рeгуляции этого процeсса задействованы и Т-лимфоциты. Т-лимфоциты сами по себе неоднoродны и состоят из нескoльких видов со звучными, дaже интригующими назвaниями: киллеры («убийцы), хелперы (повышающие иммунный ответ), амплифаеры (усиливающие), супрессоры (подавляющие его), индюсеры (стимулирующие) и др.

И Т- и В-лимфоциты, так же, как макрофаги и клeтки крови, происхoдят из общей родоначaльной клетки — стволовой кроветворной клeтки костного мозга, прохoдят путь развития от дaнной клетки до иммуноцита, приобрeтая и утрачивая определенные свойства: отвeчать на антиген, вырабатывать биологичeски активные вещества, продуцировaть антитела и т. Д.

Тaким образом, в систeме иммунитета, котoрая является сложнорегулируемой, имеется целaя иерархия клeток. Их свойства опредeляются стадией созрeвания на пути от стволовой клетки к иммунoциту, степенью участия в иммунном процeссе, его стадией и активнoстью, а также той степенью, в которой произошло старение человека или животного.

Как уже упоминалось, снижение с возрастом силы иммунного ответа — твердо установленный факт. Старение ведет к тому, что масса тимуса снижается на 90%, а селезенки на 50 %. В результате старения уменьшается и выработка антител, уменьшается продукция компонентов, активирующих размножение клеток, уменьшается чувствительность клеток к регуляторным сигналам, накапливаются вещества, угнетающие функции иммунитета. При этом количество родоначальных стволовых клеток костного мозга с возрастом фактически не изменяется. Еще не изменяется тоже и общее количество лимфоцитов в крови. Но при стабильности В-лимфоцитов старение приводит к тому, что относительное и подавляющее число Т-лимфоцитов уменьшается. Тимус-зависимоe звено иммунитета претeрпевает наибольшие возрастные измeнения: уменьшается масса тимуса, уменьшается продукция и выделение тимических гормонов, осуществляется сокращение тимус-зависимых зон в селезенке и лимфоузлах, уменьшается подавляющее и относительное количество Т-лимфоцитов в лимфоидных органах, меняется соотношение субпопуляций данных клеток, снижается их функциональная активность.

Канцерогенез (лат. cancerogenesis; cancero — рак + греч. genesis, зарождение, развитие) — сложный патофизиологический процесс зарождения и развития опухоли.

Канцерогенные факторы

На данный момент известно большое количество факторов, способствующих канцерогенезу:

Химические факторы

Вещества ароматической природы (полициклические и гетероциклические ароматические углеводороды, ароматические амины), некоторые металлы и пластмассы обладают выраженным канцерогенным свойством благодаря их способности реагировать с ДНК клеток, нарушая ее структуру (мутагенная активность). Канцерогенные вещества в больших количествах содержатся в продуктах горения автомобильного и авиационного топлива, в табачных смолах. При длительном контакте организма человека с этими веществами могут возникнуть такие заболевания, как рак легкого, рак толстого кишечника и др. Известны также эндогенные химические канцерогены (ароматические производные аминокислоты триптофана), вызывающие гормонально зависящие опухоли половых органов.

Физические факторы

Солнечная радиация (в первую очередь ультрафиолетовое излучение) и ионизирующее излучение также обладает высокой мутагенной активностью. Так, после аварии Чернобыльской АЭС отмечено резкое увеличение заболеваемости раком щитовидной железы у людей, проживающих в зараженной зоне. Длительное механическое или термическое раздражение тканей также является фактором повышенного риска возникновения опухолей слизистых оболочек и кожи (рак слизистой рта, рак кожи, рак пищевода).

Биологические факторы

Доказана канцерогенная активность вируса папиломы человека в развитии рака шейки матки [2], вируса гепатита В в развитии рака печени, ВИЧ — в развитии саркомы Капоши. Попадая в организм человека, вирусы активно взаимодействуют с его ДНК, что в некоторых случаях вызывает трансформацию собственных протоонкогенов человека в онкогены. Геном некоторых вирусов (ретровирусы) содержит высоко активные онкогены, активирующиеся после включения ДНК вируса в ДНК клеток человека.

Наследственная предрасположенность

Изучено более 200 наследственных заболеваний, характеризующихся повышенным риском возникновения опухолей различной локализации. Развитие некоторых типов опухолей связывают с врожденным дефектом системы репарации ДНК (пигментная ксеродерма)[3].

Существует мнение что в организме человека постоянно образуются потенциальные опухолевые клетки. Однако в силу своей антигенной гетерогенности они быстро распознаются и разрушаются клетками иммунной системы. Таким образом нормальное функционирование иммунной системы является основным фактором натуральной защиты от опухолей. Этот факт доказан клиническими наблюдениями за больными с ослабленной иммунной системой, у которых опухоли встречаются в десятки раз чаще чем у людей с нормально работающей иммунной системой. Иммунный механизм сопротивляемости опухолям опосредован большим количеством специфических клеток (В- и Т-лимфоциты, NK-клетки, моноциты, полиморфо-ядерные лейкоциты) и гуморальных механизмов. В процессе опухолевой прогрессии клетки опухоли оказывают выраженное антииммунное действие, что приводит к ускорению темпов роста опухоли и появлению метастазов.