Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цитология.doc
Скачиваний:
58
Добавлен:
13.03.2016
Размер:
1.81 Mб
Скачать

Глава 2. Методы клеточной биологии

Цитология возникла как ветвь микроанатомии, и поэтому одним из основных методов, который используют цитологи, - это метод световой микроскопии. В настоящее время этот метод нашел целый ряд дополнений и модификаций, что значительно расширило круг задач и вопросов, решаемых цитологией. Революционным моментом в развитии современной цитологии и биологии вообще было применение электронной микроскопии, открывшей необычайно широкие перспективы. С введением электронной микроскопии в ряде случаев уже трудно провести границу между собственно цитологией и биохимией, они объединяются на уровне макромолекулярного изучения объектов (например, микротрубочек, мембран, микрофиламентов и т.д.). Все же главным методическим приемом в цитологии остается визуальное наблюдение объекта. При этом исследователь не просто изучает и описывает морфологию объекта, он может видеть степень его сложности, локализовать отдельные детали, получить сведения о химизме той или иной части клетки, визуально и достаточно точно оценить ее метаболические свойства, выяснить строение этой части на макромолекулярном уровне. Это создает своеобразие цитологии как науки, использующей главным образом методы изучения клетки непосредственно глазом, вооруженным увеличивающими оптическими системами. Кроме того, в цитологии применяются многочисленные приемы препаративной и аналитической биохимии, методы биофизики.

Световая микроскопия

Световой микроскоп, главный прибор биологии, представляет собой оптическую систему, состоящую из конденсатора, объектива. Пучок света от источника освещения собирается в конденсаторе и направляется на объект (рис. 6). Пройдя через объект, лучи света попадают в систему линз объектива; они строят первичное изображение, которое увеличивается с помощью линз окуляра. Главная оптическая часть микроскопа, определяющая его основные возможности, - объектив. В современных микроскопах объективы сменные, что позволяет изучать клетки при разных увеличениях. Главной характеристикой микроскопа как оптической системы является разрешающая способность. Изображения, даваемые объективом, можно увеличить во много раз, применяя сильный окуляр или, например, путем проекции на экран (до 105 раз). Вычислено, что разрешающая способность объектива, т.е. минимальное расстояние между двумя точками, которые видны раздельно, будет равно

d = 0,61 -----------

n sin 

где  - длина волны света, используемого для освещения объекта; n – коэффициент преломления среды;  - угол между оптической осью объектива и наиболее отклоняющимся лучом, попадающим в объектив. Разрешение микроскопа зависит от длины волны – чем она меньше, тем меньшего размера деталь мы можем увидеть, и от нумерической апертуры объектива (n sin ) – чем она выше, тем выше разрешение. Обычно в световых микроскопах используются источники освещения в видимой области спектра (400-700 нм), поэтому максимальное разрешение микроскопа в этом случае может быть не выше 200-350 нм (0,2-0,35 мкм). Если использовать ультрафиолетовый свет (260-280 нм), то можно повысить разрешение до 130-140 нм (0,13-0,14 мкм). Это будет пределом теоретического разрешения светового микроскопа, определяемого волновой природой света. Таким образом, все, что может дать световой микроскоп как вспомогательный прибор к нашему глазу, - это повысить разрешающую способность его примерно в 1000 раз (невооруженный глаз человека имеет разрешающую способность около 0,1 мм, что равно 100 мкм). Это и есть «полезное» увеличение микроскопа, выше которого мы будем только увеличивать контуры изображения, не открывая в нем новых деталей. Следовательно, при использовании видимой области света 0,2-0,3 мкм является конечным пределом разрешения светового микроскопа.

Но все же в световом микроскопе можно видеть частицы меньшей величины, чем 0,2 мкм. Это метод «темного поля», или, как его называли раньше, метод «ультрамикроскопии». Суть его в том, что подобно пылинкам в луче света (эффект Тиндаля) в клетке при боковом освещении светятся мельчайшие частицы (меньше 0,2 мкм), отраженный свет от которых попадает в объектив микроскопа. Этот метод успешно применяется при изучении живых клеток.

Если же необработанные живые или мертвые клетки рассматривать в проходящем свете, то в них различаются только крупные детали из-за того, что они обладают иным коэффициентом преломления и поглощения световых лучей, чем окружающая среда. Большая же часть клеточных компонентов мало отличается по этим свойствам как от среды (воды или тканевых растворов), так и друг от друга и поэтому мало заметны и не контрастны. Для их изучения приходится изменять освещенность (теряя при этом в четкости изображения) или применять особые методы и приборы. Один из таких приемов – метод фазово-контрастной микроскопии, широко использующийся для наблюдений за живыми клетками. Он основан на том, что отдельные участки прозрачной в общем клетки хоть мало, но все же отличаются друг от друга по плотности и по светопреломлению. Проходя через них, свет изменяет свою фазу, однако такое изменение фазы световой волны наш глаз не улавливает, так как он чувствителен только к изменению интенсивности света. Последняя зависит от величины амплитуды световой волны. В фазово-контрастном микроскопе в объектив вмонтирована специальная пластинка, проходя через которую луч света испытывает дополнительный сдвиг фазы колебаний. При построении изображения взаимодействуют уже лучи, находящиеся в одной фазе либо в противофазе, но обладающие разной амплитудой; тем самым создается светло-темное контрастное изображение объекта.

Сходный прием используется в интерференционном микроскопе. Он устроен так, что пучок параллельных световых лучей от осветителя разделяется на два потока. Один из них проходит через объект и приобретает изменения в фазе колебания, другой идет, минуя объект. В призмах объектива оба потока вновь соединяются и интерферируют между собой. В результате интерференции будет строиться изображение, на котором участки клетки, обладающие разной толщиной или разной плотностью, будут отличаться друг от друга по степени контрастности. В этом приборе, измеряя сдвиги фаз, можно определить концентрацию и массу сухого вещества в объекте.

С помощью поляризационного микроскопа изучают объекты, обладающие так называемой изотропией, т.е. упорядоченной ориентацией субмикроскопических частиц (например, волокна веретена деления, миофибриллы и др.). У такого микроскопа перед конденсором помещается поляризатор, который пропускает световые волны с определенной плоскостью поляризации. После препарата и объектива помещается анализатор, который может пропускать свет с этой же плоскостью поляризации. Поляризатор и анализатор – это призмы, сделанные из исландского шпата (призмы Николя). Если вторую призму (анализатор) повернуть затем на 90о по отношению к первой, то свет проходить не будет. В том случае, когда между такими скрещенными призмами будет находиться объект, обладающий двойным лучепреломлением, т.е. способностью поляризовать свет, он будет виден как светящийся на темном поле. С помощью поляризационного микроскопа можно убедиться, например, в ориентированном расположении мицелл в клеточной стенке растений.