Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биология-Лекция №6.doc
Скачиваний:
86
Добавлен:
13.03.2016
Размер:
1.71 Mб
Скачать
  1. Хромосомные мутации

В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности — разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями или аберрациями.

В результате аберраций, при котором хромосомы обмениваются неравноценным генетическим материалом, появляются новые группы сцепления:

1. С изменением числа генов в группе сцепления:

- делеции - там где отдельные участки выпадают;

- дупликации - там где отдельные участки удваиваются (рис. 3.57).

2. С изменением локализации генов:

- инверсия - нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 180°. Происходит под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и других видов излучения), некоторых химических соединений, вирусов (рис. 3.57);

- транслокация – когда фрагмент хромосомы, отделившийся от нее при разрыве, может быть утрачен клеткой при очередном митозе, если он не имеет центромеры:

1) реципрокная транслокация - две поврежденные негомологичные хромосомы взаимно обмениваются оторвавшимися участками (рис. 3.57);

2) транспозиция - присоединение фрагмента к своей же хромосоме, но в новом месте —(рис. 3.57).

Рис. 3.57. Виды хромосомных перестроек

Рис. 3.58. Изменение формы хромосом

в результате перицентрических инверсий

Рис. 3.59. Образование кольцевых (I) и полицентрических (II) хромосом

Рис. 3.60. Хромосомные перестройки, связанные с центрическим слиянием или разделением хромосом являются причиной изменения числа хромосом в кариотипе

Рис. 3.61. Петля, образующаяся при конъюгации гомологичных хромосом, которые несут неравноценный наследственный материал в соответствующих участках в результате хромосомной перестройки

  1. Геномные мутации

Причиной структурных изменений генома может быть нарушение тех процессов, которые в норме обеспечивают его устойчивость, в первую очередь процессов, протекающих в мейозе.

Нарушение расхождения бивалентов в анафазе I мейоза является причиной изменения количества хромосом в гаплоидном наборе гамет.

Нерасхождение отдельного бивалента приводит к появлению одной гаметы, лишенной данной хромосомы, и другой, имеющей эту группу сцепления в двойном количестве (рис. 3.76). Такое нерасхождение хромосом в мейозе может затрагивать любую из 23 пар хромосом (см. таблицу – следствия).

Оплодотворение таких гамет нормальными половыми клетками приводит к появлению особей, в кариотипе которых изменено общее число хромосом за счет уменьшения (моносомия – 2n-1) или увеличения (трисомия – 2n+1) числа отдельных хромосом. Нарушения структуры генома, заключающиеся в изменении количества отдельных хромосом, называют анэуплоидией (некратное гаплоидному уменьшение или увеличение числа хромосом: 2n+1; 2n+2; 2n-1 и т.д.).

Рис. 3.76. Нарушение расхождения отдельных бивалентов (1, 2, 3) в мейозе

как причина возникновения анэуплоидий:

А метафаза 1 мейоза; Б образование аномальных гамет в результате нарушения расхождения 3-го бивалента в анафазе I мейоза; Воплодотворение аномальных гамет нормальными гаметами другого пола; Г образование зигот с анэуплоидным кариотипом (моносомия или трисомия по 3-й хромосоме)

В том случае, если в целом повреждается механизм распределения гомологичных хромосом между полюсами веретена (что наблюдается при его разрушении), клетка остается неразделившейся. Во второе деление мейоза она вступает не гаплоидной, а диплоидной. Из нее образуются диплоидные гаметы. Оплодотворение таких гамет приводит к образованию триплоидных организмов. Увеличение в кариотипе зиготы числа наборов хромосом называют полиплоидией (число наборов хромосом в кариотипе отличается от двух: 3n, 4n и т.д.)

Изучение процессов мутагенеза обнаружило, что отдельные гены человека могут изменять свою структуру с частотой, соизмеримой с таковой у других живых организмов (10-5—10-6 на один ген на поколение). Правда, в силу социальности человек создает в ходе своей деятельности новую среду с более высокими дозами и более широким спектром мутагенов, что не может не сказываться на интенсивности мутационного процесса в наследственном материале не только человечества, но и других видов живых организмов.

Возникающие соматические мутации являются причиной появления злокачественных новообразований.

Причиной злокачественного разрастания ткани могут быть также нарушение митоза и неравноценное распределение хромосом между дочерними клетками с возникновением анэуплоидий или хромосомных аберраций. Это вызывает либо гибель клеток, либо приводит к появлению клонов, способных к неконтролируемому росту. В злокачественных образованиях обычно встречаются субклоны, имеющие разные кариотипы, что свидетельствует о множественных аномалиях митоза в клетках опухолей.

Хромосомные перестройки и геномные мутации приводят к выраженным отклонениям в развитии и часто являются причиной гибели организма на разных стадиях его онтогенеза, обычно в раннем эмбриогенезе. В значительной степени именно этими мутациями определяется высокий процент (15%) прерывания диагностированных беременностей.

Триплоидии плода, как правило, приводят к прерыванию беременности на ранних стадиях, однако описано очень небольшое число случаев живорождения триплоидов.

Анэуплоидия по разным хромосомам встречается как в материале абортусов, так и у рожденных детей. Некоторые анэуплоидий несовместимы с жизнью. Так, трисомия по 16-й хромосоме обнаруживается только в материале абортусов.

В то же время у человека известны синдромы, связанные с аномалиями числа хромосом, характеризующиеся разной степенью жизнеспособности.

Частота встречаемости наследственных заболеваний (по данным Научного комитета ООН по действию радиации за 1988г):

- частота естественно встречающихся хромосомных болезней, связанных с аберрациями хромосом – 400 случаев на 1 млн новорожденных;

- наследственные геномные болезни (с изменением числа хромосом) встречаются с частотой 3400 случаев на 1 млн новорожденных (0,38% новорожденных).

Приведем примеры наследственных болезней, которые позволяют оценить в некоторой степени тяжесть генетического груза человечества и сложность организации генома человека.

Рис. 4.3. Синдром трисомии 21 (синдром Дауна).

А внешний вид больного; Б кариотип больного

Наиболее частым хромосомным заболеванием у человека является синдром Дауна, обусловленный три-сомией по 21-й хромосоме, встречающийся с частотой 1—2 на 1000 (рис. 4.3). Примерно в 60% случаев трисомия 21 является причиной гибели плода, около 30% родившихся умирает на первом году жизни. Еще 46% не переживает Злетний рубеж, однако иногда люди с синдромом Дауна доживают до значительного возраста (рис. 4.4), хотя в целом продолжительность их жизни сокращена. Применение эффективных противомикробных препаратов позволяет несколько увеличить продолжительность жизни таких больных. Трисомия 21 может быть результатом случайного нерасхождения гомологичных хромосом в мейозе.

Рис. 4.4. Женщина с синдромом Дауна в возрасте 38 лет

Наряду с этим известны случаи регулярной трисомии, связанной с транслокацией 21-й хромосомы на другую —21, 22, 13, 14 или 15-ю хромосому (рис. 4.5).

Рис. 4.5. Кариотип при транслокационном синдроме Дауна

(одна 21-я хромосома присоединена к 15-й хромосоме — указано стрелкой)

Рис. 4.6. Синдром трисомии 13 (синдром Патау).

А внешний вид больного; Б кариотип больного с трисомией в группе D: