Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экзамен по Физиологии.docx
Скачиваний:
375
Добавлен:
10.03.2016
Размер:
831.07 Кб
Скачать

10. Строение биомембран…

Строение биомембран

Организация всех мембран имеет много общего, они пос­троены по одному и тому же принципу. Основу мембраны составляет липидный бислой (двойной слой амфифильных липидов), которые имеют гидрофильную "головку" и два гидрофобных "хвоста". В липидном слое липидные молекулы пространственно ориентированы, об­ращены друг к другу гидрофобными "хвостами", головки мо­лекул обращены на наружную и внутреннюю поверхности мембраны.

Липиды мембраны: фосфолипиды, сфинголипиды, гликолипиды, холестерин.

Выполняют, помимо формирования билипидного слоя, другие функции:

  • формируют окружение для мембранных белков (аллостерические активаторы ряда мембранных ферментов);

  • являются предшественниками некоторых вторых посредников;

  • выполняют "якорную" функцию для некоторых периферических белков.

Среди мембранных белковвыделяют:

периферические - располагаются на наружной или внутренней поверхностях билипидного слоя; на наружной поверхности к ним относятся рецепторные белки, белки адгезии; на внутренней поверхности - белки сис­тем вторичных посредников, ферменты;

интегральные- частично погружены в липидный слой. К ним относятся рецепторные белки, белки адгезии;

трансмембранные- пронизывают всю толщу мембраны, причем некоторые белки проходят через мембрану один раз, а другие - многократно. Этот вид мембранных белков формирует поры, ионные каналы и насосы, белки-переносчики, рецепторные белки. Трансмембранные белки играют ведущую роль во взаимодействии клетки с окружающей средой, обеспечивая рецепцию сигнала, проведение его в клетку, усиления на всех этапах распространения.

В мембране этот тип белков формирует домены (субъеди­ницы), которые обеспечивают выполнение трансмембранными белками важнейших функций.

Основу доменов составляют трансмембранные сегменты, образованные неполярными аминокислотными остатками, за­крученными в виде ос-спирали и внемембранные петли, пред­ставляющие полярные области белков, которые могут достаточно далеко выступать за пределы билипидного слоя мембраны (обозначают как внутриклеточные, внеклеточные сегменты), отдельно выделяют СООН- и NН2-терминальные части домена.

Часто просто выделяют трансмембранную, вне- и внут­риклеточную части домена - субъединицы. Белки мембраны также делят на:

  • структурные белки: придают мембране форму, ряд механических свойств (эластичность и т.д.);

  • транспортные белки:

  • формируют транспортные потоки (ионные каналы и насосы, белки-переносчики);

  • способствуют созданию трансмембранного потенциала.

  • белки, обеспечивающие межклеточные взаимодействия:

- адгезивные белки, связывают клетки друг с другом или с внеклеточными структурами;

  • белковые структуры, участвующие в образовании специализированных межклеточных контактов (десмосомы, нексусы и т.д.);

  • белки, непосредственно участвующие в передаче сигналов от одной клетки к другой.

В состав мембраны входят углеводы в виде гликолипидовигликопротеидов. Они формируют олигосахаридные цепи, которые располагаются на наружной поверхности мембраны.

Свойства мембраны:

1. Самосборка в водном растворе.

2. Замыкание (самосшивание, замкнутость). Липидный слой всегда замыкается сам на себя с образованием полностью отграниченных отсеков. Это обеспечивает самосшивание при повреждении мембраны.

3. Асимметрия (поперечная) - наружный и внутренний слои мембраны отличаются по составу.

4. Жидкостность (подвижность) мембраны. Липиды и белки могут при определенных условиях перемещаться в своем слое:

  • латеральная подвижность;

    • вращения;

    • изгибание,

а также переходить в другой слой:

  • вертикальные перемещения (флип-флоп)

5. Полупроницаемость (избирательная проницаемость, селективность) для конкретных веществ.

Функции мембран

Каждая из мембран в клетке играет свою биологическую роль.

Цитоплазматическая мембрана:

• отграничивает клетку от окружающей среды;

• осуществляет регуляцию обмена веществ между клеткой и микроокружением (трансмембранный обмен);

• производит распознавание и рецепцию раздражителей;

• принимает участие в образовании межклеточных кон тактов;

• обеспечивает прикрепление клеток к внеклеточному матриксу;

• формирует электрогенез.

Мембраны эндоплазматического ретикулума.

Гладкого эндоплазматического ретикулума участвуют:

• в синтезе фосфолипидов, стероидов, полисахаридов;

• в инактивации метаболитов;

• в инактивации БАВ;

• в детоксикации ядовитых веществ.

Шероховатого эндоплазматического ретикулума участвуют:

• в синтезе секреторных, лизосомальных и мембранных белков;

• в транспорте синтезированных белков в другие отделы клетки;

• в прикреплении рибосом.

Мембрана аппарата Гольджи:

• обеспечивает модификацию белков, синтезированных в

эндоплазматическом ретикулуме, предназначенных для

секреции и инкреции, включения в мембраны и др.;

• участвует в синтезе фрагментов плазматических мембран, лизосом, секреторных гранул;

• обеспечивает упаковку в везикулы, секреторные гранулы белков, БАВ.

Мембраны митохондрий:

2 мембраны: внутренняяивнешняя.

На внутренней мембране митохондрий локализованы ферменты, участвующие в транспорте электронов и синтезе АТФ (окислительное фосфорилирование).

Внешняя мембрана митохондрий содержит ферменты общего пути катаболизма.

Мембрана лизосомы:

• отграничивает ферменты гидролазы от цитозоля, предохраняя клетку от автолиза;

• обеспечивает поддержание в лизосоме кислой среды (рН-5,0), необходимой для действия гидролаз;

• осуществляет эндоцитоз (фагоцитоз).

Ядерная мембрана:

• состоит из внешней и внутренней мембран;

• отграничивает генетический материал (ДНК) от цитозоля;

• имеет поры, позволяющие РНК проникать из ядра в цитоплазму;

• регуляторным белкам - из цитозоля в ядро.

Рецепторная функция мембран, внутриклеточные пути проведения сигнала

Рецепторная функция мембран обеспечивает взаимодейст­вие клетки с микроокружением; участие клетки в реакциях тка­ни, органа; участие ядра, органелл в формировании реакции клетки на воздействии.

Информационные сигналы, которые воздействуют на цитоплазматическую мембрану и вызывают значимые измене­ния в деятельности клетки, можно сгруппировать в три группы:

  1. Изменение потенциала мембраны.

  2. Изменение напряжение билипидного слоя мембраны или цитоскелета клетки.

  3. Сигнальные молекулы (лиганды).

Классификация мембранных рецепторов

По локализации делятся на цитоплазматические и ядер­ные.

По механизму развития событий рецепторы делятся на ионотропные и метаботропные.

Ионотропныерецепторы относят к быстроотвечающим рецепторам, ответ в течение миллисекунд.

Формируются интегральными белками, имеют несколько субъединиц. Содержат субъединицу, имеющую центр связы­вания для сигнальной молекулы.

Центры связывания для сигнальной молекулы у ионотропных рецепторов делятся на:

  • потенциалзависимые сенсоры;

  • механозависимые сенсоры;

  • сенсоры для внеклеточных и внутриклеточных лигандов.

Метаботропные рецепторы- медленноотвечающие (се­кунды, минуты, часы).

Метаботропные рецепторы делятся на две большие группы:

  • рецепторы, связанные с ионными каналами. Изменение проницаемости ионных каналов реализуется через вто­рые посредники;

  • рецепторы, не связанные непосредственно с мембран­ными каналами.

Рецепторы, не связанные непосредственно с мембранны­ми каналами делятся на:

  1. Рецепторы, связанные с G-белком. К этой группе относится большая часть рецепторов.

  1. Каталитические рецепторы:

  • с собственной гуанилитциклазной активностью. К ним относятся рецепторы, обладающие способнос­тью реализовывать сигнал через цГМФ опосредован­ный путь;

  • с собственной тирозинкиназной активностью. К ним относятся рецепторы к инсулину, активация которых вызывает фосфорилирование различных групп внут­риклеточных белков, которые, меняя свою биологи­ческую активность, вызывают широкий спектр реакций, присущих инсулину.

3. Рецепторы, освобождающие факторы транскрипции. Находятся в мембранах цитоплазмы и эндоплазматического ретикулума. При активации от них протеолитическими ферментами цитозоля отщепляется пептидный фрагмент, ко­торый, попадая в ядро клетки, запускает транскрипцию соот­ветствующего гена.

4. Ядерные рецепторы.

Белки-рецепторы стероидных гормонов - факторы транс­крипции. Каждый рецептор имеет область для связывания лиганда и участок, взаимодействующий с ДНК.

Вторые посредники (мессенджеры) передачи сигнала в клетке.

В настоящее время ко вторым посредникам относят цАМФ, цГМФ, ДАГ, ИФ3, ионы Са++.

Вторые посредники:

  • оказывают воздействие на несколько групп протеинкиназ;

  • изменяют активность нескольких групп фосфодиэстераз;

  • способны непосредственно влиять на активность неко­торых ионных каналов.

цАМФ:

• активируют протеинкиназу А (цАМФ-зависимую протеинкиназу);

• активирует фосфодиэстеразу, катализирующую цГМФ. Уровень цАМФ определяется соотношением активности протеинкиназы А и фосфосфодиэстеразы, гидролизующей цАМФ.

Значительное влияние на активность цАМФ оказывают производные арахидоновой кислоты.

цГТФ:

  • активируют протеинкиназу G(цГМФ-зависимую протеинкиназу);

  • активируют фосфодиэстеразу, катализирующую цАТФ;

  • изменяют проницаемость ионных каналов (Na+ каналы и др.).

Инозитол-1, 4, 5-трифосфат (ИФ3).

Инозитол-1, 4, 5-трифосфат (ИФ3) или (ИТФ) способен связываться с кальциевыми каналами мембран цитоплазмы, эндоплазматического ретикулума и повышать их проницае­мость. По градиенту концентрации Са++входит в клетку через эти каналы, концентрация кальция в цитоплазме возрастает.

Диацилглицерол (ДАГ).

Диацилглицерол (ДАГ) за счет латеральной диффузии ак­тивирует мембранносвязанный фермент - протеинкиназу С (ПК-С).

Кальций (Са++).

Кальций, находясь в ионизированном состоянии:

  • активирует фосфолипазу С;

  • наряду с ДАГ, Са++является активатором протеинкиназы С;

  • связывает с кальмодулином;

активирует кальмодулинзависимые протеинкиназы.