Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ермилов В.В. Расчет и проектирование систем обеспечения безопасности, 2012.pdf
Скачиваний:
142
Добавлен:
08.03.2016
Размер:
4.21 Mб
Скачать

2

4

5

6

H2SO4

NaHSO2

 

Ca(OH)2

Сточная

вода

1

Осадок Очищенная

2

3

вода

Рис. 1.57. Схема установки по восстановлению хрома периодического действия: 1 – сборник; 2 – реакторы; 3 – мерники; 4 6 – емкости

В установках непрерывного действия (рис. 1.58) сточные воды сначала поступают в усреднитель, затем в смеситель и нейтрализатор. Усреднитель рассчитывают на пребывание

воды в нем 10÷20 мин. Раствор бисульфата вводят в смеситель после снижения рН до 2,5÷3. В конец смесителя или в камеру обезвреживания вводят гидроксид кальция (известковое мо-

локо) или раствор NaOH для увеличения рН до 8÷9. Процесс обезвреживания длится до 30 мин. Осадок образуется в нейтрализаторе и выпадает медленно, трудно уплотняется и обезвреживается. Для ускорения осаждения добавляют полиакриламид.

NaHSO4

H2SO4 Ca(OH)2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

Обработан-

Сточная

1

 

 

 

3

 

 

 

 

 

 

 

 

ная вода

вода

 

 

 

 

 

 

 

 

 

 

 

 

 

Осадок

Рис. 1.58. Схема установки восстановления хрома непрерывного действия: 1 – усреднитель; 2 – смеситель; 3 – емкость для нейтрализации и отстаивания

Хорошие результаты получаются при использовании в качестве восстановителя сульфата железа FeSO4. Процесс можно проводить как в кислой, так и в щелочной среде:

108

СrO3 +6FeSO4 +6H2SO4 = 3Fe(SO4 )3 +Cr(SO4 )3 +6H2O,

СrO3 +6FeSO4 +6Ca(OH )2 +6H2O = 2Cr(OH )3 +6Fe(OH )3 +6CaSO4 .

Расход FeSO4 зависит от рН среды и концентрации хрома. Наиболее благоприятные условия проведения процесса: температура 20 °С, рН ≈ 7 и расход FeSO4 в 1,3 раз больше стехиометрического.

Восстановление диоксидом серы происходит по схеме:

SO2 + H2O H2SO3 ,

2CrO3 + 3H2O Cr2( SO4 )3 + 3H2O.

Время, необходимое для полного восстановления Cr(VI) зависит от содержания его в воде. Например, при pH = 3 для уменьшения концентрации Cr(VI) в растворе от 30 до 5 мг/л требуется 1 мин, а от 5 до 0,1 мг/л – 35 мин.

В присутствии соды в сточных водах хром полностью удаляется из них:

6 Na2CrO4 + SO2 + Na2CO3 + nH2O = Cr2O3 nH2O + 3Na2SO4 +CO2 .

Процесс восстановления проводят, при 90 °С. После отделения осадка фильтрованием в сточных водах остается только сульфат натрия. Осадок прокаливают при высокой температуре с целью получения стандартного оксида хрома.

В качестве восстановителя можно использовать и гидросульфит цинка или смесь его с известью в различных соотношениях, а также соединения, содержащие фосфор Р(I), природный газ, аммиак, древесный уголь, водород и др.

Возможно также осаждение Cr(VI) в виде нерастворимых соединений без предварительного восстановления его до Сr3+, например, ацетатом бария. В этом случае Cr(VI) осаждается в виде хромата бария. Достоинством этого метода является возможность одновременной

очистки сточных вод и от ионов SO42.

1.6.3. Удаление ионов тяжелых металлов

Во многих отраслях промышленности перерабатывают или применяют различные соединения ртути, хрома, кадмия, цинка, свинца, меди, никеля, мышьяка и другие вещества, что ведет к загрязнению ими сточных вод. Для удаления этих веществ из сточных вод в настоящее время наиболее распространены реагентные методы очистки, сущность которых заключается в переводе растворимых в воде веществ в нерастворимые при добавлении различных реагентов с последующим отделением их от воды в виде осадков. Недостатком реагентных методов очистки является безвозвратная потеря ценных веществ с осадками.

В качестве реагентов для удаления из сточных вод ионов тяжелых металлов используют гидроксиды кальция и натрия, карбонат натрия, сульфиды натрия, различные отходы, например феррохромовый шлак, который содержит (в %):

Сa – 51,3; МgО – 9,2; SiO2 – 27,4; Cr2O3 – 4,13; Al2O3 – 7,2, FeO2 – 0,73.

Наиболее широко используется гидроксид кальция. Осаждение металлов происходит в виде гидроксидов. Процесс проводится при различных значениях рН.

Значения рН, соответствующие началу осаждения гидроксидов различных металлов и полному осаждению (табл. 1.10), зависят от природы металлов, концентрации их в растворе, температуры, содержания примесей. Например, при совместном осаждении двух или нескольких ионов металлов при рН = const; достигаются лучшие результаты, чем при осаждении каждого из металлов в отдельности. При этом образуются смешанные кристаллы и происходит адсорбция на поверхности твердой фазы ионов металлов, благодаря чему достигается более полная очистка от некоторых металлов.

Таблица 1.10

Значения рН в процессе осаждения гидроксидов металлов

109

Вид катиона

 

Значения рН

начало осаждения*

полное осаждение**

 

Железо Fe+2

7,5

9,7

Железо Fe+2

2,3

4,1

Цинк Zn2+

6,4

8,0

Хром Cr3+

4,9

6,8

Никель Ni2+

7,7

9,5

Алюминии Al3+

40

5,2

Кадмий Cd2+

8,2

9,7

* При исходной концентрации осаждаемого иона 0,01 моль/л.

** Значения рН соответствуют остаточной концентрации металла 10 моль/л.

Очистка от соединений ртути. Сточные воды, загрязненные ртутью и ее соединениями, образуются при производстве хлора и едкого натра, в других процессах электролиза с использованием ртутных электродов, на ртутных заводах, в некоторых гальванических производствах, при изготовлении красителей, углеводородов, на предприятиях, использующих ртуть как катализатор.

В производственных сточных водах может присутствовать металлическая ртуть, неорганические и органические ее соединения. Неорганические соединения ртути: оксид – НgО, хлорид (сулема) – НgС12, сульфат – НgSO4, сульфид (киноварь) – НgS, нитрат – Нg(NO3)2, цианид – Нg(NCS)2, тиоцианат – Нg(OCN)2, цианат – Нg(OCN)2. В неорганических соединениях токсичны главным образом ионы Hg2+, поэтому наиболее опасны хорошо растворимые и легко диссоциирующие соли.

Органические соединения ртути применяют при консервировании древесины, при синтезе металлорганических соединений, как ядохимикаты, для защиты пластических материалов, бумажной массы и текстиля, казеиновых клеев от плесневых грибков. Органические соединения ртути весьма токсичны и отличаются от неорганических солей тем, что не дают реакции на ионы Нg. В водоемах ртуть под влиянием органических соединений, содержащихся в природных водах, превращается в сильнотоксичные соединения. Предельно допустимая концентрация ртути в водоемах равна 0,005 мг/л.

Металлическая ртуть может быть удалена из сточных вод в процессах отстаивания или фильтрования. Частицы, прошедшие с фильтратом или не успевшие осесть, окисляют хлором или NaOCl доHgCl2. Затем воду обрабатывают восстановителем (NaHSO4 или Na2SO3) для их удаления и связывания остатков свободного хлора. Ртуть осаждают сульфидом натрия с последующим коагулированием образующегося сульфида ртути хлоридом железа. Очистка может быть осуществлена смешанной солью – сульфидом железа и сульфатом бария.

Для выделения из сточных вод ртути используют методы восстановления: сульфидом железа, гидросульфидом натрия, гидразином, железным порошком, газообразным сероводородом и др. Широко изучаются сорбционные методы очистки от ртути. Весьма эффективным является ионный обмен с винилпиридиновыми сорбентами, емкость которых доходит до 40 %. Наиболее распространенным способом удаления растворимых в воде соединений ртути является перевод их в трудно растворимый сульфид ртути и осаждение его.

Произведение растворимости HgS в воде равно 1,6-10–20, что отвечает остаточной концентрации в растворе, равной 2,5-10–21 мг/л. Для осаждения Нg в сточные воды сначала добавляют сульфид натрия, гидросульфид натрия или сероводород. Затем обрабатывают воду хлоридами натрия, калия, магния, кальция или сульфитом магния в количестве 0,1 г/л. В этих условиях сульфид ртути осаждается в виде гранул. Для удаления тонкодисперсных коллоидных частичек сульфида ртути целесообразно добавлять коагулянты Al(SO4)3∙18H2O, Fe-

SO4∙7H2O и др.

Осадок сульфида ртути отделяют от сточных вод на вакуум-фильтрах или фильтрпрессах. Отделение НgS до остаточной концентрации 0,001 мг/л можно обеспечить и на

110

угольных фильтрах. Отработанный уголь, содержащий сульфид ртути, сжигают в печи или подвергают обработке для рекуперации ртути. Для удаления из растворов соединений ртути можно использовать и свежеосажденный сульфид железа, который получают при взаимодействии ионов S2– или FeSO4∙7H2O, FeCl3∙6H2O. Для очистки может быть применена и смесь сульфида железа с сульфатом бария при избытке сульфида железа. Растворенные неорганические соединения ртути можно восстанавливать до металлической ртути с последующим выделением из воды.

Кроме методов осаждения для очистки сточных вод от неорганических соединений ртути могут быть использованы и сорбционные методы.

Изучен процесс образования амальгамы ртути в электрическом поле. Способ пригоден для очистки сточных вод, содержащих от 0,01 до 100 мг/л соединений ртути. В этом процессе сточная вода фильтруется через слои стеклянных шаров, покрытых медью или цинком. Шары являются катодом, а наружный корпус аппарата – анодом. При регенерации фильтрующей загрузки производят переполюсовку электродов.

Органические соединения ртути сначала разрушают окислением, например газообразным хлором. После удаления избытка хлора катионы ртути восстанавливают до металлической или переводят в труднорастворимые сульфиды с последующим удалением осадка.

Очистка от соединений цинка, меди, никеля, свинца, кадмия, кобальта. Соли этих металлов содержатся в сточных водах горно-обогатительных фабрик, металлургических, машиностроительных, металлообрабатывающих, химических, химико-фармацевтических, лакокрасочных, текстильных и др. заводов.

При обработке кислых вод оксидом кальция и гидроксидом натрия ионы указанных тяжелых металлов, содержащиеся в стоках, связываются в трудно растворимые соединения. Состав солей зависит от рН среды. Так, при рН = 7 осаждается гидроксидсульфат цинка состава ZnSO4∙3Zn(OH)2, а при повышении рН до 8,8 составу осадка соответствует формула ZnSO4∙5Zn(OH)2. В сильнощелочной среде твердая фаза представляет собой в основном гидроксид.

При обработке стоков, содержащих соли цинка, гидроксидом натрия дозирование реагента необходимо проводить при строгом контроле за рН обрабатываемого стока с тем, чтобы не создать условии для растворения амфотерных гидроксидов. Выделение катионов Zn2+ щелочами основано на переводе их в трудно растворимых гидроксид цинка:

Zn2+ + 2OH Zn( OH )2 .

Произведение растворимости гидроксида цинка составляет 7,1 1018, началу выпадения в осадок соответствует рН = 5,4. При рН = 10,5 начинается растворение амфотерных гидроксидов цинка, а при достижении рН = 12 происходит образование комплекса:

Zn( OH )2 + 2OH [Zn( OH )2 ]2.

Исходя из этого, очистку следует проводить при рН = 8-9. В этих условиях происходит максимальное осаждение гидроксида цинка.

При действии соды на сточные воды, содержащие соли цинка, образуются гидроксокарбонаты:

2ZnCl2 + 2Na2CO3 + H2O 4NaCl +CO2 +( ZnOH )2 CO3

При значениях рН от 7 до 9,5 образуется основной карбонат состава

2ZnCO3 3Zn( OH )2 , начиная с рН = 10 доля гидроксида возрастает.

Хотя осаждение основных карбонатов начинается при более низких значениях рН, чем соответствующих гидроксидов, расход соды на осаждение выше, чем при использовании едкого натра или извести. Это объясняется тем, что при осаждении тяжелых металлов содой процесс идет через стадию образования гидрокарбонатов и для завершения реакции требуется избыток реагента.

Выделение диоксида углерода в результате осаждения содой ведет к тому, что пузырьки газа обволакивают частицы осадка и поднимают их, способствуя всплытию части осадка в

111

отстойниках. Газ необходимо удалять продувкой воздухом по достижении рН = 4,5.

К недостаткам едкого натра и соды как реагентов следует отнести также их относительно высокую стоимость и дефицитность.

Очистка сточных вод от меди связана с осаждением ее в виде гидроксида или гидроксидкарбоната:

Сu2+ + SOHCu(OH )2 ,

2Cu2+ + 2OH +CO32( CuOH )2 CO3 .

Осаждение гидроксида меди происходит при pH = 5,3.

Растворимость гидроксикорбаната меди ничтожно мала, поэтому наиболее выгодно осаждать медь в виде основного карбоната. Для этого в растворе нейтрализующего агента необходимо иметь одновременно как гидроксидные, так и карбонатные ионы. Следовательно, применение для осаждения меди только щелочей или извести высшего сорта, дающих гидроксид-ионы, нецелесообразно. Лучшим реагентом для очистки сточных вод от катионов меди является известь III сорта, содержащая «недожиг» (СаСО3).

Возможен процесс извлечения меди из сточных вод осаждением ферроцианидом калия. Этот реагент может быть использован и для осаждения других ионов тяжелых металлов.

Для удаления из сточных вод меди и кадмия разработан процесс контактирования их с диоксидом серы или сульфитами и порошкообразным металлом, например, цинком или железом. При этом металл восстанавливает сульфиты до сульфидов, которые с тяжелыми металлами образуют труднорастворимые сульфиды. При рН = 2 и температуре сточных вод 50 0С, при которых проводится процесс, достигается высокая степень очистки.

Очистка сточных вод от никеля основана на выделении его из раствора в виде труднорастворимых соединений:

Ni2+ + 2OH Ni( OH )2 ,

Ni2+ +CO32+ 2OH ( NiOH )2 CO3 ,

Ni2+ +CO32NiCO3 .

Осаждение гидроксида никеля начинается при рН=6,7. Произведение растворимости Ni(OH)2 равно 2,0-10–18 . Так же как и для меди, концентрация катионов никеля чрезвычайно зависит от рН: при pH = 8,0 она составляет 23,5 мг/л, а при рН = 9,5 только 0,5 мг/л. Произведение растворимости карбоната никеля выше, чем гидроксида и равно 6, 6-10–9. Растворимость гидроксидкарбонат никеля практически равна нулю, поэтому для наиболее полного удаления никеля следует (так же как и для меди) применять известь III сорта, содержащую

СаСО3.

Находящиеся в растворе катионы свинца переводят в осадок в виде одного из трех труднорастворимых соединений:

Pb2+ +OH Pb( OH )2 ,

2Pb2+ + 2OH +CO ( PbOH )2 CO3

Pb2+ +CO32PbCO3 .

Началу выпадения в осадок гидроксида свинца соответствует рН = 6,0. Произведение его растворимости равно 1,1 10– 20 , карбоната свинца – 1,0 – 10–13. Основной карбонат свинца в воде нерастворим. Приведенные данные показывают, что для очистки от свинца применимы все три метода. Наиболее дешевым из них является получение карбоната свинца с использованием в качестве реагента осадителя известняка, мела, мрамора. Ввиду того, что они являются твердыми минеральными породами, их можно применять в качестве загрузки фильтров, через которые профильтровывают очищаемые стоки.

Несмотря на то, что в сточных водах обычно содержатся катионы нескольких металлов, применение для удаления каждого из них специфического осадителя метода невозможно.

112

Поэтому сточную воду обрабатывают обычно гидроксидом кальция (известковым молоком), приготовляемым из извести III сорта; при этом происходит одновременное осаждение катионов тяжелых металлов в виде гидро-ксолей, гидроксидов и карбонатов. Установлено, что при совместном осаждении нескольких металлов достигаются лучшие результаты, чем при осаждении каждого из металлов в отдельности. Это связано с образованием смешанных кристаллов и адсорбцией ионов металлов на поверхности твердой фазы.

Для повышения степени очистки сточных вод, содержащих тяжелые металлы, предложено после осаждения их гидроксидов известью при pH – 8,5 и отделения осадка вводить в

осветленную сточную воду раствор Na2SiO3 в количестве, в 5÷30 раз превышающем стехиометрическую норму. После отделения осадка сточная вода с небольшим содержанием ионов тяжелых металлов может быть возвращена в систему оборотного водоснабжения.

Обработка сточных вод щелочными реагентами позволяет снизить содержание тяжелых металлов в растворе до величин, сопоставимых с ПДК для водоемов санитарно-бытового пользования. Однако когда требуется более глубокая очистка, например, при непосредственном сбросе в рыбохозяйственные водоемы, очистка щелочными реагентами не дает необходимого эффекта.

Более глубокая очистка от тяжелых металлов достигается при обработке сточных вод сульфидом натрия. Это связано с тем, что растворимость сульфидов тяжелых металлов значительно меньше растворимости любых других труднорастворимых соединений – гидроксидов и карбонатов.

Для удаления небольших количеств ионов тяжелых металлов, возможно, использовать пирит. Процесс можно проводить фильтрованием сточной воды через гранулированный пирит или непосредственным введением порошка в сточную воду. Кроме пирита для этой цели можно использовать сульфид любого другого нетоксичного металла, произведение растворимости которого больше произведения растворимости сульфида извлекаемого из сточной воды металла.

Поскольку гидроксиды и сульфиды тяжелых металлов образуют устойчивые коллоидные системы для интенсификации процесса их осаждения в сточные воды необходимо вводить коагулянты и флокулянты. Коллоидные частицы сульфидов имеют отрицательный заряд, поэтому для коагуляции сульфидов используют электролиты с многозарядными катионами – обычно сульфаты алюминия или трехвалентного железа. При коагуляции гидроксидов требуется электролит с многозарядными анионами, т.к. коллоидные частицы заряжены положительно. Хорошими коагулянтами гидроксидов являются сульфат-ионы. Помимо электролитной коагуляции на практике часто используют взаимную коагуляцию коллоидных растворов с противоположным зарядом частиц. Для ускорения процесса коагуляции используют флокулянты, в основном полиакриламид. Добавка его в количестве 0,01 % от массы су-

хого вещества увеличивает скорость выпадения осадков гидроксидов металлов в 2÷3 раза. Схема реагентной очистки сточных вод от ионов тяжелых металлов с отделением осад-

ков показана на рис. 1.59.

113

Недостатком такой очистки является образование большого количества трудно обезвоживаемого шлама. Кроме того, очищенная вода содержит большое количество солей кальция, поэтому ее трудно использовать в оборотном водоснабжении. Исходя из этого, предложено обрабатывать слив после отстаивания последовательно хлоридом кальция и содой. При этом происходит соосаждение карбонатов металлов с карбонатом кальция. Образующиеся кристаллические осадки карбонатов металлов имеют незначительный объем и легко обезвоживаются. Одновременно происходит умягчение воды, что создает возможность использования ее в системе оборотного водоснабжения.

Очистка от соединений мышьяка. Предельно допустимая концентрация мышьяка в водоемах равна 0,05 мг/л. Для очистки сточных вод от мышьяка применяют реагентные, сорбционные, электрохимические, экстракционные и другие методы. Выбор метода зависит от формы растворенного мышьяка, состава, кислотности и других показателей воды.

Для очистки больших объемов воды с высоким содержанием мышьяка практическое

Кислые сточные воды

Щелочные сточные воды

Усреднение

Нейтрализация и образование гидроксидов тяжелых металлов

Полиакриламид

 

 

 

 

 

Флокуляция

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Na2S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отстаивание

 

 

 

 

 

 

 

 

 

 

Вода

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Уплотнение

 

 

 

 

Образование сульфидов

 

 

 

 

 

 

 

 

 

 

 

 

 

CaO, Fe2SO4,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Коагуляция

 

 

 

 

 

 

 

 

 

 

 

Al2(SO4)3

Обезвоживание

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Шлам Отстаивание (фильтрование)

В отвал

На переработку

Очищенная вода

Рис. 1.59. Схема реагентной очистки сточных вод отионов тяжелых металлов

применение нашел метод химического его осаждения в виде труднорастворимых соединений (арсенаты и арсениты щелочноземельных и тяжелых металлов, сульфиды и триоксид мышьяка).

114

Для очистки от кислородсодержащих соединений мышьяка широко применяют известковое молоко. При этом в зависимости от состава сточных вод и условий очистки (рН, температура, расход реагента) выпадают в осадок арсенаты и арсениты различного состава. Присутствие в сточных водах ионов тяжелых металлов повышает степень очистки от мышьяка, т.к. происходит осаждение арсенатов и арсенитов этих металлов.

Из сильнокислых растворов мышьяк осаждают сульфидом натрия, сероводородом. Очистку сульфидно-щелочных сточных вод от мышьяка, входящего в состав анионов тиосолей, проводят сульфатом железа (железным купоросом).

Соединения пятивалентного мышьяка удаляются из сточных вод лучше, чем трехвалентного. Кроме того, хранение осадков, содержащих пятивалентный мышьяк, дешевле, т.к. он менее токсичен и менее растворим. Исходя из этого, соединения трехвалентного мышьяка перед осаждением окисляют до пятивалентного. В качестве окислителей используют хлорную известь, хлор, гипохлоритную пульпу, пероксид водорода, азотную кислоту, озон, пиролюзит и др.

Пиролюзит – природный материал, состоящий в основном из диоксида марганца, широко используют для окисления трехвалентного мышьяка. В кислой среде процесс протекает следующим образом:

H3AsO3 + MnO2 + H2SO4 = H3AsO4 + MnO4 + H2O.

Оптимальный режим окисления: расход MnO2 – четырехкратный по сравнению со сте-

хиометрическим, кислотность раствора 30-40 г/л серной кислоты, температура 70÷80 0С, время окисления 3 ч.

После окисления мышьяка проводят его осаждение в виде арсенита марганца при ней-

трализации гидроксидом кальция (известковым молоком) до рН = 6÷9. Затем осадок отфильтровывают и захороняют в водонепроницаемых траншеях.

Стоки с небольшой концентрацией мышьяка окисляют путем фильтрования воды через слой пиролюзита. Осаждение проводят известковым молоком в присутствии фосфат-ионов.

Кроме окислительной способности пиролюзит обладает сорбционными свойствами. Величина сорбционной емкости его по трех- и пятивалентному мышьяку соответственно равна 12,6 и 29,9 мг/л. При увеличении рН раствора количество сорбируемого мышьяка на пиролюзите и окислительная способность его уменьшаются. В кислых средах (рН < 1) сорбционная способность падает, а окислительная возрастает.

Присутствующие в сточной воде другие катионы и анионы, сорбируясь на пиролюзите, ухудшают его окислительную способность.

Окислительная способность диоксида марганца постепенно снижается в результате процессов сорбции и заиливания поверхности зерен пиролюзита. Для активации пиролюзит обрабатывают концентрированной серной кислотой или едким натром. Кислота меньше десорбирует мышьяк, но полнее растворяет шлам, образующийся на поверхности пиролюзита.

Очистка от солей железа. В природных водах содержание железа колеблется от 0,01 до 26 мг/л. Кроме того, железо содержится в сточных водах химических, металлургических, машиностроительных, металлообрабатывающих, нефтехимических, текстильных, химикофармацевтических и других производств. При содержании железа более 1 мг/л вода приобретает бурый цвет. При движении такой воды по трубопроводам на их стенках откладываются соединения железа и железобактерии, уменьшая сечение трубопровода.

Вводоемах ПДК солей железа в пересчете на Ре2+ равняется 0,5 мг/л. В то же время, в некоторых производствах технологическая вода и вода, находящаяся в обороте, не должна содержать соединений железа более 0,05 мг/л, например в производствах капрона, найлона, целлофана, натурального и вискозного шелка, кинопленки, электроники, полупроводников и др. Для указанных производств требуется глубокая очистка природных и сточных вод от соединений железа.

Для обезжелезивания вод применяют аэрацию, реагентные методы, электродиализ, адсорбцию, обратный осмос.

Впроцессе аэрирования происходит окисление двухвалентного железа в трехвалентное.

115

Реакция окисления в водном растворе протекает по схеме:

4Fe2+ +O2 + 2H2O = 4Fe3+ + 4OH ,

Fe3+ + 3H2O = Fe( OH )3 + 3H + .

Или суммарно:

4Fe2+ +O2 +10H2O = 4Fe( OH )3 + 8H + .

В присутствии гидрокарбонатных ионов в воде окисление двухвалентного железа и гидролиз трехвалентного железа протекают по реакции:

4Fe2+ + 8HCO3+ 2H2O = 4Fe( OH )3 ↓ +8CO2 .

На окисление 1 мг двухвалентного железа расходуется 0,143 мг кислорода. Для обеспечения высокой скорости химической реакции содержание кислорода в воде должно быть 0,5- 0,9 мг на 1 мг железа.

Процесс аэрирования проводят в вентиляционной градирне. В том случае, когда необходимо обогащать воду кислородом и удалять часть свободного оксида углерода, используют градирни с хордовой насадкой, представляющей собой щиты из досок. Для приблизительной оценки размеров градирни можно исходить из следующего: расход воды на 1 м2 площади градирни 40 мг, расход воздуха 7 мг воды. Использование другой насадки нецелесообразно, т.к. может произойти ее забивка соединениями железа.

После аэрирования необходимо отделить осадок гидроксида железа. Для этой цели используют процессы отстаивания и фильтрования. Осадок гидроксида железа можно использовать для приготовления красок или для очистки газов от сероводорода.

В процессе осаждения гидроксида железа происходит уплотнение осадка амфотерного

Fe(OН)3 в гематита Fе2О3: 2Fе(ОН)3= Fе2О3+3Н2О.

При высоком содержании железа в воде аэрационным методом его полностью удалить нельзя, поэтому применяют реагентные методы. Для этой цели используют хлор, хлорат кальция (хлорную известь), перманганат калия, озон, оксид кальция (известь), карбонат натрия (соду) и др. Реагенты дозируются в воду перед осветлителями или отстойниками.

При взаимодействии с хлором протекает следующая реакция:

Fe( HCO3 )2 +Cl2 +Ca( HCO3 )2 2Fe( OH ) ↓ +CaCl2 +6CO2 .

Скорость этой реакции увеличивается с повышением рН. На окисление 1 мг двухвалентного железа расходуется 0,64 мг Сl;. В случае использования хлората кальция его использу-

ют в виде 1÷2 %-го раствора, который дозируют непосредственно в сточную воду. Окисление двухвалентного железа перманганатом калия проходит по уравнению:

3Fe( HCO3 )2 + KMnO4 + 2H2O 3Fe( OH )3 + MnO2 + 5CO2 + KHCO3 .

Если железо содержится в воде в виде органических соединений или коллоидных частиц, применяют озонирование. При этом на 1 массовую часть железа требуется 1 массовая часть озона.

Очистка от соединений марганца. Соединения марганца содержатся в сточной воде металлургических, машиностроительных и химических производств. При концентрации марганца более 0,05 мг/л вода окрашивается в темный цвет. Некоторые производства предъявляют жесткие требования к содержанию марганца в воде (бумажная, текстильная, кинокопировальная, синтетических волокон, пластмасс).

Удаление из воды марганца может быть достигнуто следующими методами:

1)обработкой воды перманганатом калия;

2)аэрацией, совмещенной с известкованием;

3)фильтрованием воды через марганцевый песок или марганцевый катионит;

4)окислением озоном, хлором или диоксидом хлора.

При обработке воды перманганатом калия достигается одновременная очистка от марганца и от железа. Перманганат калия окисляют с образованием малорастворимого диоксида марганца:

116

3Mn2+ + 2MnO4+ 2H2O 5MnO2 ↓ +4H + .

В этом процессе 1 мг KMnO4 окисляет 0,53 мг Мn+ .Наибольший эффект достигается при обработке воды дозой 2 мг KMnO4 на 1 мг. Осадок диоксида марганца удаляют фильтрованием.

Удаление марганца аэрацией с подщелачиванием воды применяют при одновременном присутствии в ней марганца и железа. При аэрации воды удаляется часть диоксида углерода и происходит ее насыщение кислородом воздуха. При удалении СО2 возрастает рН сточной воды, что способствует ускорению процессов окисления и гидролиза железа и частично марганца с образованием гидроксидов.

Двухвалентный марганец медленно окисляется в трех- и четырехвалентный растворен-

ным в воде кислородом. Окисление марганца происходит при рН = 9÷9,5. Образующийся гидроксид марганца выпадает в осадок в виде Мn(ОН)3 и Мn(ОН)4. Растворимость этих соединений 0,01 мг/л, образующийся Мn(ОН)4 снова участвует в процессе, являясь катализатором окисления марганца.

При рН = 9,5 марганец удаляется почти полностью, при рН < 7,5 кислородом воздуха он почти не окисляется. Для ускорения процесса окисления марганца воду после аэрации до подачи на фильтры подщелачивают известью или содой для повышения рН, затем осветляют в осветлителях или отстойниках. Процесс окисления Мn2+ резко ускоряется, если аэрированную воду фильтруют через контактный фильтр, загруженный дробленым пиролюзитом (MnO2∙H2O) либо кварцевым песком, предварительно обработанным оксидами марганца.

Двухвалентный марганец может быть удален из воды в процессе окисления его хлором, озоном или диоксидом хлора. Скорость окисления Мn хлором зависит от рН среды. При рН

= 7 за 60÷90 мин окисляется всего 50 % Мn2+. При подщелачивании известью до рН = 8 Мn окисляется практически полностью. Расход Cl2 на окисление 1 мг Мn составляет 1,3 мг. При наличии в воде аммонийных солей расход хлора увеличивается.

Диоксид хлора и озон при рН=6,5-7 окисляют Мn2+ за 10÷15 мин. На окисление 1 мг Мn2 расходуется 1,35 мг ClO2 или 1,45 мг О3. Однако применение этих окислителей требует строительства сложных установок, поэтому их практически не используют.

Марганец может быть удален из воды биохимическим окислением. Процесс проводят следующим образом. На песке фильтра высеивают особый вид марганец потребляющих бактерий, которые в процессе своей жизнедеятельности поглощают из воды марганец. Отмирающие бактерии образуют на зернах песка пористую массу с высоким содержанием оксида марганца, который служит катализатором процесса окисления.

Марганец из воды может быть удален при помощи марганцевого катионита, который приготовляют, пропуская через любой катионит в натриевой форме растворы хлорида марганца и перманганата калия. При этом происходят следующие реакции:

NaКат[ ]+MnCl 2 Mn Кат[ ]+Na + +Cl ,

MnКат[ ]+Me +MnO 4ME Кат[ ]+MnO ,2

где Me – катион Na+ или К+.

В этих процессах перманганат калия окисляет марганец с образованием оксидов марганца, которые в виде пленки оседают на поверхности зерен катионита. При регенерации пленку восстанавливают раствором перманганата калия.

Из рассмотренных методов наиболее эффективным является метод обработки перманганатом калия. Он не требует сложного оборудования и просто контролируется.

1.7. Биологическая очистка сточных вод

Метод основан на способности гетеротрофных микроорганизмов использовать в качестве источников питания разнообразные органические соединения, подвергая последние биохимическим превращениям. Использование свойств адаптации бактерий активного ила по-

117

зволяет успешно решать вопросы биологической очистки стоков воды химических производств, содержащих сложные органические соединения неприродного происхождения.

Разрушение органических соединений при помощи микроорганизмов называют биохимическим окислением. Окисление органических веществ происходит избирательно, поэтому некоторые соединения разрушаются легко, другие – медленно или совсем не окисляются.

Известны аэробные и анаэробные методы биохимической очистки сточных вод. Аэробный метод основан на использовании аэробных групп микроорганизмов, для жизнедеятель-

ности которых требуются постоянный приток кислорода и температура 20÷40 0С. При изменении кислородного и температурного режимов меняются состав и число микроорганизмов, а, следовательно, и эффективность очистки стоков. В случае анаэробной очистки микроорганизмы культивируются в активном иле или биопленке, биохимические процессы протекают без доступа кислорода. Этот метод используют главным образом для обезвреживания осадков.

Аэробные процессы биохимической очистки могут протекать в природных условиях и в искусственных сооружениях. В естественных условиях очистка происходит на полях орошения, полях фильтрации и биологических прудах. Искусственными сооружениями являются аэротенки и биофильтры разной конструкции. Тип сооружений выбирают с учетом местоположения предприятия, климатических условий, источника водоснабжения, объема промышленных и бытовых сточных вод, состава и концентрации загрязнений. В искусственных сооружениях процессы очистки протекают с большей скоростью, чем в естественных условиях.

Поля орошения – это специально подготовленные земельные участки, используемые одновременно для очищения сточных вод и агрокультурных целей. Очистка сточных вод в этих условиях идет под действием почвенной микрофлоры, солнца, воздуха и под влиянием жизнедеятельности растений.

В процессе биологической очистки сточные воды проходят через фильтрующий слой почвы, в котором задерживаются взвешенные и коллоидные частицы, образуя в порах грунта микробиальную пленку. Затем образовавшаяся пленка адсорбирует коллоидные частицы и растворенные в сточных водах вещества. Проникающий из воздуха в поры кислород окисляет органические вещества, превращая их в минеральные соединения. В глубокие слои почвы проникание кислорода затруднено, поэтому наиболее интенсивное окисление происходит в

верхних слоях почвы (0,2÷0,4 м). При недостатке кислорода в прудах начинают преобладать анаэробные процессы.

Биологические пруды представляют собой каскад прудов, состоящий из 3÷5 ступеней, через которые с небольшой скоростью протекает осветленная или биологически очищенная сточная вода. Пруды предназначены для биологической очистки и для доочистки сточных вод в комплексе с другими очистными сооружениями. Различают пруды с естественной или

искусственной аэрацией. Пруды с естественной аэрацией имеют небольшую глубину (0,5÷1 м), хорошо прогреваются солнцем и заселены водными организмами.

Для нормальной работы необходимо соблюдать оптимальные значения рН и температуры сточных вод. Температура должна быть не менее 6 °С. В зимнее время пруды не работают.

При расчете прудов определяют их размеры, обеспечивающие необходимую продолжительность пребывания в них сточных вод. В основе расчета определение скорости окисления, которую оценивают по БПК и принимают для вещества, разлагающегося наиболее медленно.

Перед использованием воды, доочищенной в биологическом пруде, в системе технического водоснабжения ее обрабатывают хлором.

В искусственных условиях очистку проводят в аэротенках или биофильтрах. Аэротенками называют железобетонные аэрируемые резервуары. Процесс очистки в

аэротенке идет по мере протекания через него аэрированной смеси сточной воды и активного ила. Аэрация необходима для насыщения воды кислородом и поддержания ила во взвешенном состоянии.

Аэротенк представляет собой открытый бассейн, оборудованный устройствами для

118

принудительной аэрации. Они бывают двух-, трех- и четырехкоридорные. Глубина аэротен-

ков 2÷5 м.

Аэротенки подразделяются по следующим основным признакам:

1)по гидродинамическому режиму – на аэротенки-вытеснители, аэротенки-смесители и аэротенки промежуточного типа (с рассредоточенным вводом сточных вод);

2)по способу регенерации активного ила – на аэротенки с отдельной регенерацией и аэротенки без отдельной регенерации;

3)по нагрузке на активный ил – на высоконагружаемые (для неполной очистки), обычные и низконагружаемые (с продленной аэрацией);

4)по количеству ступеней – на одно-, двух- и многоступенчатые;

5)по режиму ввода сточных вод – на проточные, полупроточные, с переменным рабочим уровнем и контактные;

6)по конструктивным признакам.

В аэротенках-вытеснителях воду и ил подают в начало сооружения, а смесь отводят в конце его. Повышенная концентрация загрязнений в начале сооружения обеспечивает увеличение скорости их окисления. Изменение состава воды по длине аэротенка затрудняет адаптацию ила и снижает его активность. Такие аэротенки применяют для окисления малокон-

центрированных вод (до 300 мг/л по БПКполн).

В аэротенках-смесителях воду и ил вводят равномерно вдоль длинных сторон коридора аэротенка. Полное смешение в них сточной воды с иловой смесью обеспечивает выравнивание концентраций ила и скоростей процесса биохимического окисления. Такие аэротенки предназначены для очистки концентрированных производственных сточных вод (БПКполн до 1000 мг/л) при разных колебаниях их распада, состава и количества загрязнений.

В аэротенки с рассредоточенной подачей сточной воды ее подают в нескольких точ-

ках по длине аэротенка, а отводят из торцевой части.

Возвратный ил полностью подают в начало аэротенка. Эти аппараты занимают промежуточное положение между вытеснительными и смесительными.

В аэротенке-осветителе сточная вода поступает в зону аэрации, где смешивается с активным илом и аэрируется. Затем смесь через окна попадает в зону осветления и зону дегазации. В зоне осветления возникает взвешенный слой активного ила, через который фильтруется иловая смесь. Очищенная вода через лотки удаляется из аэротенка.

Двухкамерные аэротенки-отстойники (рис. 1.60) являются разновидностью аэротен- ков-осветителей. В них зона аэрации разделена вертикальной перфорированной перегородкой на две камеры. В первой камере происходит насыщение иловой смеси кислородом и сорбция загрязнений активным илом, во второй – окисление сорбированных загрязнений и стабилизация активного ила. Избыточный ил удаляется из зоны осветления.

1

2

3

4

5

6

Очищенная

Сточная

 

 

 

 

 

вода

 

 

 

 

 

 

вода

 

 

 

 

 

Активный ил

 

 

 

 

 

 

Рис. 1.60. Двухкамерный аэротенк-отстойник:

1 – импеллерный аэратор; 2 – зона предварительного обогащения; 3 – перегородка; 4 – роторный аэратор; 5 – зона ферментации: 6 – зона осветления

Аэрация. Растворимость кислорода в воде мала (зависит от температуры и давления), по-

119

этому для насыщения ее кислородом подают большое количество воздуха. Растворимость кислорода в чистой воде при давлении 0,1 МПа представлена ниже:

Температура, °С

5

10

12

14

16

18

20

22

24

26

28

Растворимость,

12,8

11,3

10,8

10,3

9,8

9,4

9,0

8,7

8,3

8,0

7,7

мг/л

 

 

 

 

 

 

 

 

 

 

 

При аэрации должна быть обеспечена большая поверхность контакта между воздухом, сточной водой и илом, что является необходимым условием эффективной очистки. На практике используют пневматический, механический и пневмомеханический способы аэрации сточной воды в аэротенках. Выбор способа аэрации зависит от типа аэротенка и от необходимой интенсивности аэрации.

Аэраторы могут быть с вертикальной и горизонтальной осью вращения. Аэраторы с вертикальной осью вращения делятся на поверхностные и заглубленные в жидкость; по виду механизма аэрации они делятся на турбинные, импеллерные и струйные. Аэраторы с горизонтальной осью вращения могут быть поверхностные (роторные) и мешалочные.

Механизм аэрирования у аэраторов различной конструкции разный: 1) подсос воздуха через поверхность жидкости в результате понижения давления в ней за вращающимися лопатками; 2) насыщение кислородом струй и капель жидкости, соприкасающихся с воздухом; 3) смешение воды и воздуха в межлопастном пространстве аэраторов в условиях резкого перепада давлений перед и за вращающимися лопатками; 4) подсос воздуха струями жидкости, падающими в основную массу жидкости; 5) растворение кислорода через обменивающиеся слои поверхности жидкости при ее турбулентном перемешивании.

Биофильтры это сооружения, в корпусе которых размещается кусковая насадка (загрузка) и предусмотрены распределительные устройства для сточной воды и воздуха. В биофильтрах сточная вода фильтруется через слой загрузки, покрытый пленкой из микроорганизмов. Микроорганизмы биопленки окисляют органические вещества, используя их как источники питания и энергии. Таким образом, из сточной воды удаляются органические вещества, а масса активной биопленки увеличивается. Отработанная (омертвевшая) биопленка смывается протекающей сточной водой и выносится из биофильтра.

В качестве загрузки используют различные материалы: щебень, гравий, шлак, керамзит, керамические и пластмассовые кольца, кубы, шары, цилиндры, шестигранные блоки; металлические и пластмассовые сетки, скрученные в рулоны.

На эффективность очистки сточных вод в биофильтрах влияют биохимические, массообменные, гидравлические и конструктивные параметры: БПК очищаемой сточной воды, природа органических загрязнений, скорость окисления, интенсивность дыхания микроорганизмов, масса веществ, абсорбируемых пленкой, толщина биопленки, состав обитающих в ней микроорганизмов, интенсивность аэрации, площадь и высоту биофильтра, характеристика загрузки, физические свойства сточной воды, температура процесса и гидравлическая нагрузка, интенсивность рециркуляции, равномерность распределения сточной воды по сечению загрузки, степень смачиваемости биопленки.

1.8. Другие методы

Наряду с рассмотренными и распространенными методами очистки производственных сточных вод, реже находят применение также и другие физико-химические методы.

Эвапорация. Эвапорационные методы очистки производственных сточных вод подразделяются на пароциркуляционный и азеотропную ректификацию.

Пароциркуляционный метод применяется для удаления из сточных вод летучих веществ (фенолов, крезолов, ксиленолов, нафтолов и др.). Он основан на отгонке загрязнений с циркулирующим водяным паром и на последующей его отмывке от загрязнений раствором щëлочи. При нейтрализации щëлочного раствора загрязнения выделяются из него и могут

120

быть отделены от водного слоя отстаиванием. Отгонка осуществляется в периодически действующих аппаратах или в непрерывно действующих дистцилляционных колоннах. При движении через колонну с насадкой навстречу острому пару сточная вода нагревается до 100 °С. Находящиеся в ней летучие примеси частично переходят в паровую фазу.

Азеотропная ректификация основана на свойстве многих химических соединений образовывать азеотропные нераздельнокипящие смеси с водой. Сточная вода из емкости направляется в колонну, обогреваемую паром, где отгоняется часть воды в виде азеотропной смеси с загрязняющим компонентом. Из нижней части колонны выходит очищенная вода. Пары, выходящие через верх колонны, поступают в конденсатор. Конденсат после дополнительного охлаждения направляется в сепаратор, где разделяется на два слоя – водный и органический. Водный слой из сепаратора сбрасывается в емкость исходной сточной воды, а загрязняющий компонент поступает на дальнейшую переработку или на повторное использование.

Эвапорационные методы применяются для очистки сточных вод коксохимических и химических заводов, заводов синтетического каучука и др.

Выпаривание. Выпаривание сточных вод применяется для увеличения концентрации солей, содержащихся в сточных водах, и ускорения их после дующей кристаллизации, а также для обезвреживания небольших количеств высококонцентрированных сточных вод (например, радиоактивных).

Испарение. В отличие от выпаривания, испарение осуществляется с открытой поверхности жидкости и происходит практически при любой температуре. Площадь испарительных площадок рассчитывается в зависимости от климатических и грунтовых условий.

Кристаллизация. Этот метод основывается на различной растворимости содержащихся

всточной воде веществ, зависящей не только от их вида, но и от температуры растворителя. При изменении температуры сточных вод получаются пересыщенные растворы находящихся

вних веществ, а затем их кристаллы. На этом принципе основан метод выделения из сточной воды кристаллов загрязняющего ее вещества, т.е. на естественном или ускоренном испарении жидкости. Кристаллизация применяется при обработке небольших количеств концентрированных сточных вод.

Магнитная обработка. Находит применение при очистке сточных вод металлургиче-

ской промышленности от ферромагнитных механических примесей, а также в системах оборотного водоснабжения для предупреждения накипеобразования в теплообменных аппаратах.

Термоокислительные методы. В термоокислительных методах обезвреживания органические примеси в сточных водах окисляются кислородом воздуха при повышенной температуре до безвредных продуктов (H2О, СО2). Выбор метода обезвреживания зависит от объема сточных вод, их состава и теплотворной способности, экономичности процесса и требований к очищенным стокам.

Наиболее распространенные из этих методов:

-парофазное окисление («огневой метод»);

-жидкофазное обезвреживание («мокрое сжигание»);

-каталитическое окисление.

Сущность «огневого» метода заключается в том, что сточная вода вводимая в распылен-

ном состоянии в высокотемпературные (900÷1000 °С) продукты горения топлива, испаряется, органические примеси в сточной воде сгорают, образуя продукты полного сгорания. Минеральные примеси образ уют при этом твердые или расплавленные частицы, которые выводятся из рабочей камеры печи или уносятся с дымовыми газами.

Огневой метод обезвреживания сточных вод является универсальным и характеризуется высокой степенью очистки сточных вод (98÷99,9 %). В этом методе сточная вода вводится в

распыленном состоянии в высокотемпературные продукты сгорания топлива (900÷1000 °С). Вода испаряется, а органические примеси сгорают, образуя продукты полного сгорания (СО2, Н2О). Минеральные примеси при этом образуют твердые или расплавленные частицы,

121

которые удаляются из камеры печи.

Недостатком метода является высокий расход топлива на испарение воды и перегрев па-

ра до 900÷1000 °С. В связи с этим огневой метод рекомендуется использовать: во-первых, при большом количестве сточных вод, содержащих высокотоксичные органические примеси, обезвреживание которых другими методами невозможно или экономически невыгодно; вовторых, при наличии горючих вторичных энергоресурсов, которые могут быть использованы вместо топлива.

Сущность термоокислительного жидкофазного обезвреживания (рис. 1.61) состоит в окислении кислородом воздуха органических примесей сточной воды, находящихся в жидкой фазе при повышенных температуре (до 350 ºС) и давлении. Недостатком циклонных печей является большой унос солевой массы потоком газ.

Топливо

Воздух

1 Сточная

вода

Расплав минераль-

ных веществ

2

3

Пар

В атмосферу

Вода техно-

 

 

 

 

 

 

 

 

логическая

 

 

 

4

 

 

 

7

 

 

 

Газ

 

 

Газ

 

 

 

 

Жидкость

Вода питательная

Раствор ми-

 

 

 

неральных

5

6

8

 

веществ

Рис. 1.61. Схема установкиогневого обезвреживания сточных вод:

1 – нагнетательный насос; 2– циклонный реактор; 3– парогенератор (котел-утилизатор); 4 – струйный аппарат; 5 – циркуляционный насос; 6 – емкость;

7 – каплеотделитель; 8 – дымовая труба

Продукты сгорания из реактора поступают в камеру охлаждения парогенератора. Наличие эжектора позволяет исключить дымосос. Циркуляционный насос 5 используется для подачи раствора минеральных веществ из емкости 6 в реактор 2 и в струйный аппарат 4. Пройдя каплеотделитель 7, очищенные газы поступают в дымовую трубу 8 и из нее в атмосферу. На некоторых установках используют для утилизации тепла водогрейные котлы, водоаммиачные абсорбционные холодильные машины и циклоны для сухой очистки газа от каплеуноса.

В процессе обезвреживания сточных вод, содержащих органические соединения серы, хлора, нитросоединения, образуются SO2, SО3, P2O5, НСl, Сl2, (NO)x. Вещества эти могут взаимодействовать с образованием новых, более токсичных соединений, что необходимо иметь в виду при удалении отходящих газов в окружающую среду.

Метод жидкофазного окисления основан на окислении органических веществ, растворенных в сточной воде, кислородом воздуха при температуре 100 – 350 ºС и давлении 2 – 28 МПа. Повышение давления ускоряет процесс и глубину окисления вследствие увеличения растворимости в воде кислорода. Жидкофазное окисление осуществляется как на катализа-

122

торах, так и без них. В качестве катализаторов используются металлы (Pt, Pd, Cu, Zn, Мn), нанесенные на оксид алюминия или активированный уголь.

Принципиальная схема установки жидкофазного окисления органических соединений, содержащихся в сточной воде, показана на рис. 1.62.

 

Отходящие газы

 

Продукты окисления

 

 

 

 

 

6

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сточная

 

 

 

 

 

 

 

 

 

Дымовые

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

вода

Воздух

 

 

 

 

 

 

 

газы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

Топливный

1

2

3

газ

 

Рис.1.62. Схема установки жидкофазного окисления: 1– сборник; 2– насос;

3 – теплообменник; 4 – печь; 5 – реактор;6 – сепаратор

Загрязненная вода из сборника 7 насосом 2 подается в систему обезвреживания горючих соединений. Вода нагревается в теплообменнике 3 и в печи 4, в которой сжигается природный газ. После отделения воды в сепараторе 6 газы выбрасываются, а очищенная вода охлаждается в теплообменнике 3, нагревая загрязненный поток.

В методе парофазного каталитического окисления используется гетерогенное каталитическое окисление кислородом воздуха летучих органических соединений, находящихся в сточных водах. Процесс окисления интенсивно протекает в присутствии медно-хромовых,

медно-цинковых, медно-марганцевых катализаторов. При высокой температуре (350÷400 °С)

большинство органических веществ подвергается полному окислению (98,5÷99,9 %). Применение парофазного окисления наиболее целесообразно в случае вывода техноло-

гического потока в виде пара, направляемого в конденсаторы (из выпарных аппаратов, ректификационных колонн, сушильных камер и т.д.). В данном процессе могут быть использованы конструкции реакторов, характерные для гетерогенно-каталитических процессов.

Каталитическое окисление применяется при очистке сточных вод, загрязненных летучими веществами органического происхождения. По этому методу сточная вода подается в выпарной аппарат, где пары воды и органических веществ, а также газы и воздух подогреваются до 300 ºС, а затем смесь подается в контактный аппарат, загруженный катализатором. Обезвреженная парогазовая смесь охлаждается и образующийся конденсат используется в производстве.

Термоокислительные методы очистки применяются при небольших расходах сточных вод с высокой концентрацией загрязнений.

123

2. Методы очистки промышленных выбросов в атмосферу 2.1. Естественный состав и основные виды техногенных загрязнений атмосферы

(аэродисперсные системы, газы, пары).

Атмосфера Земли – газовая оболочка Земли, имеющая сложный неоднородный состав, строение, свойства. Атмосфера регулирует тепловой режим Земли, предохраняет ее от чрезмерного нагревания и охлаждения. Если бы Земля не была окружена газовой оболочкой, то в течение только одних суток амплитуда колебаний температуры ее поверхности достигала бы 200О С. Газовая оболочка Земли защищает все живое от губительного ультрафиолетового излучения, а также других видов космического излучения. Благодаря атмосфере не достигают поверхности Земли «звездные осколки» - метеориты. Наличие воздушной оболочки обусловливает голубой цвет неба. Атмосфера является той средой, где распространяется звук. По массе 99% атмосферы сосредоточено в слое высотой до 40 км, 50% - в слое высотой до 5,5 км.

Естественный состав атмосферы формировался на протяжении всего длительного периода существования планеты Земля. При этом первоначально атропогенные воздействия на атмосферу отсутствовали полностью или были пренебрежимо малы. В результате течения сложных физических, химических, биосферных процессов сформировался приземный слой атмосферы практически постоянного состава, включающий два вида газов: постоянные газы и переменные газы. К первым относятся: азот (около 78% по объему), кислород (около 21%), благородные газы (около 1%). Содержание постоянных газов практически не зависит от того, в какой точке земного шара взята проба сухого воздуха. К переменным газам отно-

сятся: водяной пар (до 3%), углекислый газ (0,02 – 0,04%), озон ( 10-6 %). В приземном слое атмосферы могут находиться следовые количества водорода, метана, аммиака, СО, оксидов азота, оксидов серы, сероводорода. Помимо различных газов, в атмосфере содержится некоторое количество пыли. Постоянство естественного состава атмосферы обусловлено тем, что она обладает способностью к самоочищению от загрязняющих веществ.

Миллионы лет в атмосферу поступали загрязняющие вещества в результате извержений вулканов, природных пожаров, пыльных бурь, т.е. от источников природного происхождения.

Загрязнения из природных источников рассеивались в атмосфере, переносились с воздушными массами на большие расстояния, оседали или выпадали с осадками на землю. Затем почвенные микроорганизмы превращали их в безвредные соединения. В результате совокупности всех этих процессов содержание естественных загрязняющих веществ (углекислого газа, метана, аммиака, СО, оксидов азота, оксидов серы, сероводорода) в атмосфере поддерживались на таком уровне, что негативные последствия их воздействия на биоту не возникали. Живые организмы способны без вреда для себя переносить присутствие в среде обитания определенных количеств загрязняющих веществ. Однако способность атмосферы к самоочищению имеет определенные границы. Если концентрации загрязнений превысят некоторые пороговые значения, то полное самоочищение атмосферы становится невозможным. Развитие общественного производства и потребления повлекло за собой увеличение общей массы выбросов газообразных веществ, паров, аэрозолей, загрязняющих атмосферу.

Основными источниками загрязнения атмосферы являются транспортные средст-

ва с двигателями внутреннего сгорания, тепловые электрические станции, промышленные предприятия. По расчетам вклады выбросов различных источников в загрязнение атмосферы составляют: загрязненные промышленные газовые выбросы – 30%, автотранспорт –

40%, теплоэнергетика – 30%.

В состав выбросов автотранспорта и теплоэнергетики входят такие загрязняющие атмосферу вещества, как азот, оксиды азота, оксид углерода (Ι) и оксид углерода (ΙΙ), водяной

пар, оксид серы (ΙΥ), циклические , углеводороды, твердые частицы (сажа, соединения свинца) и другие вещества. Промышленные предприятия выбрасывают в атмосферу большое количество различных загрязняющих веществ, пыли. Состав промышленных выбросов в атмо-

124