Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
cd747 / ЧАСТЬ-1.doc
Скачиваний:
197
Добавлен:
03.03.2016
Размер:
4.96 Mб
Скачать

4.2. Смешанное произведение векторов, заданных своими координатами

Пусть заданы векторы . Требуется найти их смешанное произведение.

Из определения скалярного и векторного произведений следует

Таким образом, получаем формулу

(5)

Пример 2: Проверить – лежат ли векторы , ив одной плоскости, т.е. являются ли они компланарными.

По формуле смешанного произведения векторов имеем:

Поскольку , то данные векторы , и лежат в одной плоскости, т.е. являются компланарными.

Пример 3. Пирамида задана координатами своих вершин Найти высоту, проведённую из вершиныD на грань АВС. D

Построим векторы

Н С

Из геометрии известно, что объем

пирамиды равен трети произведения А

площади основания на ее высотуН, т.е. В

, (6)

поскольку основанием пирамиды является треугольник (его площадь равна половине площади параллелограмма), а высота пирамиды равна высоте соответствующего параллелепипеда.

Используя геометрический смысл смешанного произведения и форму-лы (5) и (6), получим

Из формулы (2) и геометрического смысла векторного произведения следуют

Снова воспользуемся известной из геометрии формулой

и тогда окончательно получим

Аналитическая геометрия Лекция № 8. Тема 1 : Линии на плоскости и их уравнения

1.1. Линии и их уравнения в декартовой системе координат

В аналитической геометрии линии на плоскости рассматриваются как геометрическое место точек (г.м.т.), обладающих одинаковым свойством, общим для всех точек линии.

Определение. Уравнение линии – это уравнение с двумя переменнымих и у, которому удовлетворяют координаты любой точки линии и не удовлетворяют координаты никакой другой точки, не лежащей на данной линии.

Верно и обратное, т.е. любое уравнение у

вида , вообще говоря, в декартовой

системе координат (ДСК) определяет линию

как г.м.т., координаты которых удовлетворяют

этому уравнению. О х

Замечание 1. Не всякое уравнение вида определяет линию. Например, для уравненияне существует точек, координаты, которых удовлетворяли бы этому уравнению. Такие случаи в дальнейшем рассматривать не будем. Это случай так называемых мнимых линий.

Пример 1. Составить уравнение окружности радиуса R с центром в точке .

Для любой точки , лежащейу М

на окружности, в силу определения R

окружности как г.м.т., равноудаленных

от точки , получаем уравнениех

.

1.2. Параметрические уравнения линий

Существует ещё один способ задавать линию на плоскости при помощи уравнений, которые называются параметрическими:

Замечание 2. Отметим, что параметром t в механике является время.

Пример 1. Линия задана параметрическими уравнениями

Требуется получить уравнение этой линии в ДСК.

Исключим параметр t. Для этого возведём обе части этих уравнений в квадрат и сложим

Пример 2. Линия задана параметрическими уравнениями

а

Требуется получить уравнение

этой линии в ДСК. -а а

Поступим аналогично, тогда получим

-а

Соседние файлы в папке cd747