Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Математика для юристов - Д.А. Ловцова

.pdf
Скачиваний:
41
Добавлен:
02.03.2016
Размер:
1.14 Mб
Скачать

(ɩɪɨɢɡɜɨɞɧɚɹ ɫɥɨɠɧɨɣ ɮɭɧɤɰɢɢ f(s) ɟɫɬɶ ɩɪɨɢɡɜɟɞɟɧɢɟ ɩɪɨɢɡɜɨɞɧɨɣ ɜɧɟɲɧɟɣ ɮɭɧɤɰɢɢ f ɩɨ ɚɪɝɭɦɟɧɬɭ s ɧɚ ɩɪɨɢɡɜɨɞɧɭɸ ɜɥɨɠɟɧɧɨɣ ɮɭɧɤɰɢɢ s ɩɨ ɚɪɝɭɦɟɧɬɭ x).

5. ɉɪɨɢɡɜɨɞɧɚɹ ɨɬ ɨɛɪɚɬɧɨɣ ɮɭɧɤɰɢɢ:

g’(x)

1

.

c

 

f (g(x))

 

Ɂɞɟɫɶ ɩɪɟɞɩɨɥɚɝɚɟɬɫɹ, ɱɬɨ f(x) – ɩɪɹɦɚɹ ɮɭɧɤɰɢɹ, ɚ g(x) – ɨɛɪɚɬɧɚɹ, ɢ ɩɪɨɢɡɜɨɞɧɚɹ ɨɬ ɩɪɹɦɨɣ ɮɭɧɤɰɢɢ f’(x) ɫɭɳɟɫɬɜɭɟɬ.

ȼɫɟ ɫɜɨɣɫɬɜɚ ɞɨɤɚɡɵɜɚɸɬɫɹ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɨɩɪɟɞɟɥɟɧɢɹ ɩɪɨɢɡɜɨɞɧɨɣ (5.1) ɢɭɠɟɞɨɤɚɡɚɧɧɵɯɪɚɧɟɟɫɜɨɣɫɬɜ. Ⱦɨɤɚɠɟɦ, ɤɩɪɢɦɟɪɭ, ɫɜɨɣɫɬɜɨ 5, ɩɨɥɚɝɚɹ, ɱɬɨ ɜɫɟ ɩɪɟɞɵɞɭɳɢɟ ɫɜɨɣɫɬɜɚ ɭɠɟ ɞɨɤɚɡɚɧɵ. ɉɭɫɬɶ ɩɪɹɦɚɹ ɮɭɧɤɰɢɹ ɟɫɬɶ f(x), ɚ ɨɛɪɚɬɧɚɹ ɟɣ – ɮɭɧɤɰɢɹ g(x). ȿɫɥɢ ɨɧɢ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɨɞɧɨɣɫɢɫɬɟɦɟɤɨɨɪɞɢɧɚɬ, ɬɨɢɦɟɟɬɦɟɫɬɨɬɚɤɨɟɪɚɜɟɧɫɬɜɨ:

f(g(x))

x

(5.2)

(ɧɚɩɪɢɦɟɪ, f(x)

x2, ɚ g(x)

x , ɢ f(g(x)) ( x )2 x).

ȼɨɡɶɦɟɦ ɩɪɨɢɡɜɨɞɧɵɟ ɨɬ ɥɟɜɨɣ ɢ ɩɪɚɜɨɣ ɱɚɫɬɟɣ ɪɚɜɟɧɫɬɜɚ (5.2). ɉɪɢ ɷɬɨɦ ɥɟɜɭɸ ɱɚɫɬɶ ɞɢɮɮɟɪɟɧɰɢɪɭɟɦ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ

ɩɪɚɜɢɥɚ 4:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

§

(x 'x) x ·

 

f’(g(x))ug’(x)

lim ¨

 

 

 

 

¸

1.

 

'x

 

 

 

 

 

 

 

'xo0©

 

¹

 

Ɉɬɫɸɞɚ

1

 

 

 

 

 

 

 

 

 

g’(x)

 

 

.

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

f (g(x))

 

 

 

 

 

 

 

ɇɚɩɪɢɦɟɪ, ɞɥɹ f(x)

x2 ɢ g(x)

x ɢɦɟɟɦ:

 

 

 

 

 

 

§

(x 'x)2 x

2 ·

 

 

 

f’(x)

 

lim

¨

 

 

 

 

 

¸

2ux,

 

 

¨

 

 

'x

 

¸

 

 

'xo0©

 

 

 

¹

 

 

 

ɡɧɚɱɢɬ,

 

 

1

 

 

 

 

 

 

 

 

( x )’

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2u(

x)

 

 

 

 

 

 

ȼ ɬɚɛɥ. 5.1 ɫɜɟɞɟɧɵ ɩɪɨɢɡɜɨɞɧɵɟ ɨɬ ɧɟɤɨɬɨɪɵɯ ɢɡ ɷɥɟɦɟɧɬɚɪɧɵɯ ɮɭɧɤɰɢɣ. ɗɬɭ ɬɚɛɥɢɰɭ ɢ ɩɟɪɟɱɢɫɥɟɧɧɵɟ ɜɵɲɟ ɫɜɨɣɫɬɜɚ 1..5 ɢɫɩɨɥɶɡɭɸɬ ɩɪɢ ɜɵɱɢɫɥɟɧɢɢ ɩɪɨɢɡɜɨɞɧɵɯ ɥɸɛɵɯ ɮɭɧɤɰɢɣ. Ⱦɨɤɚɠɟɦ, ɧɚɩɪɢɦɟɪ, ɮɨɪɦɭɥɵ d), e), f) ɜ ɬɚɛɥ. 5.1, ɩɨɥɚɝɚɹ, ɱɬɨ ɨɫɬɚɥɶɧɵɟ ɮɨɪɦɭɥɵ ɞɨɤɚɡɚɧɵ:

61

loga (x) ln(x) , ln(a)

d) (loga(x))ɫɜɨɣɫɬɜɨ1ɩɪɨɢɡɜɨɞɧɵɯ ɫɬɪɨɤɚ ɫ) ɬɚɛɥ.5.1,

ex ɮɭɧɤɰɢɹ, ɨɛɪɚɬɧɚɹɤ ln(x), e) (ex)ɫɜɨɣɫɬɜɨ 5 ɩɪɨɢɡɜɨɞɧɵɯ,

ɫɬɪɨɤɚ ɫ) ɬɚɛɥ.5.1

ax ɮɭɧɤɰɢɹ, ɨɛɪɚɬɧɚɹ ɤ loga (x), f) (ax)ɫɜɨɣɫɬɜɨ 5 ɩɪɨɢɡɜɨɞɧɵɯ,

ɫɬɪɨɤɚ d) ɬɚɛɥ.5.1

ɉɪɢɦɟɪ:

1 u 1 . ln(a) x

 

1

 

ex.

§

1

·

 

¨

 

¸

 

 

©ex ¹

ln(a)uax.

-x

)

e x ɫɥɨɠɧɚɹɮɭɧɤɰɢɹ: f(s) es

, s(x)

x,

-x

.

(e

ɫɜɨɣɫɬɜɨ 4 ɩɪɨɢɡɜɨɞɧɵɯ, ɫɬɪɨɤɚ e) ɬɚɛɥ.5.1

e

 

 

 

 

5.2. Свойства дифференцируемых функций

ɉɪɨɢɡɜɨɞɧɚɹ – ɦɨɳɧɵɣ ɢɧɫɬɪɭɦɟɧɬ ɞɥɹ ɢɫɫɥɟɞɨɜɚɧɢɹ ɮɭɧɤɰɢɣ. ɉɨ ɪɟɡɭɥɶɬɚɬɚɦ ɢɫɫɥɟɞɨɜɚɧɢɣ ɭɫɬɚɧɚɜɥɢɜɚɸɬɫɹ ɫɥɟɞɭɸɳɢɟ ɫɜɨɣɫɬɜɚ ɞɢɮɮɟɪɟɧɰɢɪɭɟɦɵɯ ɮɭɧɤɰɢɣ.

ɇɟɩɪɟɪɵɜɧɨɫɬɶ. ȿɫɥɢ ɮɭɧɤɰɢɹ f(x) ɢɦɟɟɬ ɩɪɨɢɡɜɨɞɧɭɸ ɜ ɬɨɱɤɟ x a, ɬɨ ɨɧɚ ɧɟɩɪɟɪɵɜɧɚ ɜ ɷɬɨɣ ɬɨɱɤɟ. ȿɫɥɢ ɮɭɧɤɰɢɹ ɢɦɟɟɬ ɩɪɨɢɡɜɨɞɧɭɸ ɧɚ ɨɬɪɟɡɤɟ [a,b], ɬɨ ɨɧɚ ɧɟɩɪɟɪɵɜɧɚ ɧɚ ɷɬɨɦ ɨɬɪɟɡɤɟ.

ɂɫɤɥɸɱɢɜ ɢɡ ɪɚɫɫɦɨɬɪɟɧɢɹ ɜɫɟ ɡɧɚɱɟɧɢɹ x, ɜ ɤɨɬɨɪɵɯ ɮɭɧɤɰɢɹ f(x) ɢ/ɢɥɢ ɟɟ ɩɪɨɢɡɜɨɞɧɚɹ f’(x) ɧɟ ɫɭɳɟɫɬɜɭɸɬ, ɛɭɞɟɦ ɢɦɟɬɶ ɞɟɥɨ ɬɨɥɶɤɨ ɫ ɧɟɩɪɟɪɵɜɧɵɦɢ ɮɭɧɤɰɢɹɦɢ.

Ɇɨɧɨɬɨɧɧɨɫɬɶ. ȿɫɥɢ f(x)!0 ɧɚ ɢɧɬɟɪɜɚɥɟ ]a,b[, ɬɨ ɮɭɧɤɰɢɹ ɦɨɧɨɬɨɧɧɨ ɜɨɡɪɚɫɬɚɟɬ ɧɚ ɷɬɨɦ ɢɧɬɟɪɜɚɥɟ. ȿɫɥɢ f(x) 0 ɧɚ ɢɧɬɟɪɜɚɥɟ ]d,e[, ɬɨ ɮɭɧɤɰɢɹ ɦɨɧɨɬɨɧɧɨ ɭɛɵɜɚɟɬ ɧɚ ɷɬɨɦ ɢɧɬɟɪɜɚɥɟ. ɇɚɩɨɦɧɢɦ, ɱɬɨ ɡɧɚɱɢɬ: ɮɭɧɤɰɢɹ ɜɨɡɪɚɫɬɚɟɬ (ɢɥɢ ɭɛɵɜɚɟɬ). ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɞɥɹ ɥɸɛɨɣ ɩɚɪɵ x2!x1 ɢɦɟɟɬ ɦɟɫɬɨ f(x2)!f(x1) (ɢɥɢ f(x2) f(x1)).

Ʉɚɤ ɦɵ ɭɠɟ ɡɧɚɟɦ, f’(x) – ɬɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɤɚɫɚɬɟɥɶɧɨɣ ɤ f(x) ɜ ɬɨɱɤɟ x. Ɂɧɚɱɢɬ, ɭɝɨɥ ɧɚɤɥɨɧɚ ɤɚɫɚɬɟɥɶɧɨɣ ɜ ɥɸɛɨɣ ɬɨɱɤɟ ɢɧɬɟɪɜɚɥɚ

ɜɨɡɪɚɫɬɚɧɢɹ ɮɭɧɤɰɢɢ 0 D S (ɭɱɚɫɬɨɤ AB ɤɪɢɜɨɣ f(x) ɧɚ ɪɢɫ.5.2), ɢ 2

62

S E S ɜ ɥɸɛɨɣ ɬɨɱɤɟ ɢɧɬɟɪɜɚɥɚ ɭɛɵɜɚɧɢɹ ɮɭɧɤɰɢɢ (ɭɱɚɫɬɨɤ DE ɤɪɢ- 2

ɜɨɣ f(x) ɧɚ ɪɢɫ.5.2).

Ɇɚɤɫɢɦɭɦɵ ɢ ɦɢɧɢɦɭɦɵ. Ɍɨɱɤɚ x c ɧɚɡɵɜɚɟɬɫɹ ɬɨɱɤɨɣ ɥɨɤɚɥɶɧɨɝɨ ɦɚɤɫɢɦɭɦɚ ɮɭɧɤɰɢɢ f(x), ɟɫɥɢ ɜ ɧɟɤɨɬɨɪɨɣ ɨɤɪɟɫɬɧɨɫɬɢ ɬɨɱɤɢ c ɮɭɧɤɰɢɹ f(x) ɨɩɪɟɞɟɥɟɧɚ ɢ f(x)df(c) (ɬɨɱɤɚ C ɧɚ ɤɪɢɜɨɣ f(x) ɧɚ ɪɢɫ.5.2). Ⱥ ɬɨɱɤɚ x g ɧɚɡɵɜɚɟɬɫɹ ɬɨɱɤɨɣ ɥɨɤɚɥɶɧɨɝɨ ɦɢɧɢɦɭɦɚ ɮɭɧɤɰɢɢ f(x), ɟɫɥɢ ɜ ɧɟɤɨɬɨɪɨɣ ɨɤɪɟɫɬɧɨɫɬɢ ɬɨɱɤɢ g ɮɭɧɤɰɢɹ f(x) ɨɩɪɟɞɟɥɟɧɚ ɢ f(x)tf(g) (ɬɨɱɤɚ G ɧɚ ɤɪɢɜɨɣ f(x) ɧɚ ɪɢɫ.5.2). Ɍɨɱɤɢ ɦɚɤɫɢɦɭɦɚ ɢ ɦɢɧɢɦɭɦɚ ɮɭɧɤɰɢɢ ɧɚɡɵɜɚɸɬɫɹ ɬɨɱɤɚɦɢ ɟɟ ɷɤɫɬɪɟɦɭɦɨɜ. ȼ ɬɨɱɤɟ ɷɤɫɬɪɟɦɭɦɚ (ɪɢɫ.5.2) ɤɚɫɚɬɟɥɶɧɚɹ ɤ f(x) ɝɨɪɢɡɨɧɬɚɥɶɧɚ.

ȿɫɥɢ ɮɭɧɤɰɢɹ f(x) ɜ ɬɨɱɤɟ x xm ɞɨɫɬɢɝɚɟɬ ɥɨɤɚɥɶɧɨɝɨ ɷɤɫɬɪɟɦɭɦɚ, ɬɨ ɟɟ ɩɪɨɢɡɜɨɞɧɚɹ ɜ ɷɬɨɣ ɬɨɱɤɟ ɪɚɜɧɚ ɧɭɥɸ: f’(xm) 0.

ɗɬɨ ɭɬɜɟɪɠɞɟɧɢɟ – ɫɭɬɶ ɬ ɟ ɨ ɪ ɟ ɦ ɚ Ɏ ɟ ɪ ɦ ɚ . Ɍɨɬ ɮɚɤɬ, ɱɬɨ f’(xm) 0 – ɧɟɨɛɯɨɞɢɦɨɟ, ɧɨ ɧɟ ɞɨɫɬɚɬɨɱɧɨɟ ɭɫɥɨɜɢɟ ɷɤɫɬɪɟɦɭɦɚ ɮɭɧɤɰɢɢ ɜ ɬɨɱɤɟ x xm, ɬɨ ɟɫɬɶ ɨɛɪɚɬɧɨɟ ɭɬɜɟɪɠɞɟɧɢɟ ɨ ɬɨɦ, ɱɬɨ ɟɫɥɢ ɜ ɬɨɱɤɟ x xj ɩɪɨɢɡɜɨɞɧɚɹ f’(xj) 0, ɬɨ ɬɨɱɤɚ xj ɟɫɬɶ ɬɨɱɤɚ ɷɤɫɬɪɟɦɭɦɚ ɮɭɧɤɰɢɢ f(x), ɜɟɪɧɨ ɧɟ ɜɫɟɝɞɚ. ɇɚɩɪɢɦɟɪ, ɧɚ ɪɢɫ.5.2 ɜ ɬɨɱɤɟ J ɩɪɨɢɡɜɨɞɧɚɹ ɨɬ f(j) ɪɚɜɧɚ ɧɭɥɸ (ɤɚɫɚɬɟɥɶɧɚɹ ɤ f(x) ɜ ɷɬɨɣ ɬɨɱɤɟ ɥɟɠɢɬ ɝɨɪɢ-

ɡɨɧɬɚɥɶɧɨ), ɧɨ ɬɨɱɤɚ x

j ɧɟ ɹɜɥɹɟɬɫɹ ɬɨɱɤɨɣ ɷɤɫɬɪɟɦɭɦɚ (ɫɥɟɜɚ ɨɬ ɧɟɟ

f(x) f(j), ɚ ɫɩɪɚɜɚ – f(x)!f(j)).

 

 

y

 

 

 

 

 

C

 

 

 

 

B

D

 

 

 

 

 

f(x)

J

 

 

 

 

 

 

E

 

 

 

 

G

 

H

A

 

 

 

 

 

D

 

 

E

 

 

 

 

x

a

b

c d e g

h

j

Ɋɢɫ.5.2

63

ɋɮɨɪɦɭɥɢɪɭɟɦ ɞɨɫɬɚɬɨɱɧɵɟ ɭɫɥɨɜɢɹ ɞɥɹ ɫɭɳɟɫɬɜɨɜɚɧɢɹ ɷɤɫɬɪɟɦɭɦɚ ɮɭɧɤɰɢɢ.

ȿɫɥɢ ɮɭɧɤɰɢɹ f(x) ɧɟɩɪɟɪɵɜɧɚ ɜ ɨɤɪɟɫɬɧɨɫɬɢ ɬɨɱɤɢ xm ɢ ɢɦɟɟɬ ɩɪɨɢɡɜɨɞɧɭɸ f’(x)t0 ɫɥɟɜɚ ɨɬ xm ɢ f’(x)d0 ɫɩɪɚɜɚ ɨɬ xm, ɬɨ xm ɟɫɬɶ ɬɨɱɤɚ ɦɚɤɫɢɦɭɦɚ (ɟɫɥɢ ɡɧɚɤɢ ɜ ɧɟɪɚɜɟɧɫɬɜɚɯ ɱɟɪɟɞɭɸɬɫɹ ɜ ɨɛɪɚɬɧɨɦ ɩɨɪɹɞɤɟ, ɬɨ xm ɟɫɬɶ ɬɨɱɤɚ ɦɢɧɢɦɭɦɚ). Ⱦɪɭɝɢɦɢ ɫɥɨɜɚɦɢ, ɩɪɢ ɩɟɪɟɯɨɞɟ x ɱɟɪɟɡ ɬɨɱɤɭ xm (ɬɨɱɤɭ ɧɭɥɹ ɩɪɨɢɡɜɨɞɧɨɣ) ɩɪɨɢɡɜɨɞɧɚɹ f’(x) ɦɟɧɹɟɬ ɡɧɚɤ:

ɜ ɦɚɤɫɢɦɭɦɟ ɫ ( ) ɧɚ ( ),

ɜ ɦɢɧɢɦɭɦɟ ɫ ( ) ɧɚ ( ).

ɂɬɚɤ, ɩɪɨɰɟɞɭɪɚ ɨɬɵɫɤɚɧɢɹ ɷɤɫɬɪɟɦɭɦɨɜ ɮɭɧɤɰɢɢ f(x) ɫɨɫɬɨɢɬ ɜ ɫɥɟɞɭɸɳɟɦ:

ɜɵɱɢɫɥɹɸɬ ɩɪɨɢɡɜɨɞɧɭɸ f‘(x) ɡɚɞɚɧɧɨɣ ɮɭɧɤɰɢɢ f(x),

ɧɚɯɨɞɹɬ ɜɫɟ ɤɨɪɧɢ x1, x2, , xm, , xn ɭɪɚɜɧɟɧɢɹ f’(x) 0,

ɞɥɹ ɤɚɠɞɨɝɨ ɢɡ ɤɨɪɧɟɣ xm ɜɵɩɨɥɧɹɸɬ ɬɚɤɢɟ ɞɟɣɫɬɜɢɹ:

3ɨɬɫɬɭɩɚɸɬ ɨɬ xm ɜɥɟɜɨ, ɩɨɥɨɠɢɜ x xl, ɢ ɞɥɹ ɷɬɨɝɨ ɡɧɚɱɟɧɢɹ x ɨɩɪɟɞɟɥɹɸɬ ɡɧɚɤ ɩɪɨɢɡɜɨɞɧɨɣ f’(xl),

3ɨɬɫɬɭɩɚɸɬ ɨɬ xm ɜɩɪɚɜɨ, ɩɨɥɨɠɢɜ x xr, ɢ ɞɥɹ ɷɬɨɝɨ ɡɧɚɱɟɧɢɹ x ɨɩɪɟɞɟɥɹɸɬ ɡɧɚɤ ɩɪɨɢɡɜɨɞɧɨɣ f’(xr),

3ɫɪɚɜɧɢɜɚɹ ɡɧɚɤɢ ɜɟɥɢɱɢɧ f’(xl) ɢ f’(xr), ɨɩɪɟɞɟɥɹɸɬ, ɤɚɤɨɣ ɢɦɟɧɧɨ ɷɤɫɬɪɟɦɭɦ ɮɭɧɤɰɢɢ f(x) ɨɬɜɟɱɚɟɬ ɬɨɱɤɟ xm.

Ɂɧɚɱɟɧɢɹ xl ɢ xr ɜɵɛɢɪɚɸɬ ɭɞɨɛɧɵɦɢ ɞɥɹ ɜɵɱɢɫɥɟɧɢɹ ɡɧɚɱɟɧɢɣ f’(xl) ɢ f’(xr).

ɉɪɢɦɟɪ. ɂɫɫɥɟɞɭɟɦ ɮɭɧɤɰɢɸ f(x) 2ux3 6ux2 18ux 15:

ɜɵɱɢɫɥɹɟɦ f’(x) 6ux2 12ux 18.

ɪɟɲɢɜ ɭɪɚɜɧɟɧɢɟ 6ux2 12ux 18 0, ɧɚɣɞɟɦ x1 1, x2 3.

ɞɥɹ x1 ɩɨɥɨɠɢɦ xl 2, xr 0 ɢ ɧɚɯɨɞɢɦ, ɱɬɨ f’( 2) 30!0, ɚ f’(0) 18 0. Ɂɧɚɱɢɬ, ɜ ɬɨɱɤɟ x1 1 ɢɦɟɟɦ ɦɚɤɫɢɦɭɦ ɞɥɹ f(x).

ɞɥɹ x2 ɩɨɥɨɠɢɦ xl 0, xr 4 ɢ ɧɚɯɨɞɢɦ, ɱɬɨ f’(0) 18 0, ɚ

f’(4) 30!0. Ɂɧɚɱɢɬ, ɜ ɬɨɱɤɟ x2 3 ɞɥɹ f(x) ɢɦɟɟɦ ɦɢɧɢɦɭɦ. Ɂɚɞɚɧɧɚɹ ɮɭɧɤɰɢɹ ɨɩɪɟɞɟɥɟɧɚ ɧɚ ɜɫɟɣ ɱɢɫɥɨɜɨɣ ɨɫɢ. ɍɤɚɠɟɦ ɧɚ

ɭɱɚɫɬɤɢ ɟɟ ɦɨɧɨɬɨɧɧɨɫɬɢ: ɩɪɢ x x1 ɮɭɧɤɰɢɹ ɜɨɡɪɚɫɬɚɟɬ, ɧɚ ɢɧɬɟɪɜɚɥɟ ] 1, 3[ – ɭɛɵɜɚɟɬ, ɚ ɩɪɢ x!3 ɫɧɨɜɚ ɜɨɡɪɚɫɬɚɟɬ.

Ɋɚɫɫɦɨɬɪɢɦ ɬɚɤɭɸ ɮɭɧɤɰɢɸ: f(x) (x 1)3. ȿɟ ɩɪɨɢɡɜɨɞɧɚɹ f’(x) 3u(x 1)2 ɪɚɜɧɚ ɧɭɥɸ ɜ ɬɨɱɤɟ x1 1. Ɉɞɧɚɤɨ ɢ ɫɥɟɜɚ ɨɬ ɷɬɨɣ ɬɨɱɤɢ x x1, ɢ ɫɩɪɚɜɚ ɨɬ ɧɟɟ x!x1 ɩɪɨɢɡɜɨɞɧɚɹ f(x)!0 (ɧɟ ɦɟɧɹɟɬ ɡɧɚɤɚ ɩɪɢ ɩɟɪɟɯɨɞɟ ɱɟɪɟɡ ɬɨɱɤɭ x1). Ɂɧɚɱɢɬ, ɜɷɬɨɣ ɬɨɱɤɟɷɤɫɬɪɟɦɭɦɚ ɧɟɬ.

5.3. Дифференциал функции

Ⱦɢɮɮɟɪɟɧɰɢɚɥɵ ɩɟɪɟɦɟɧɧɵɯ x, y ɢ ɞɪ. ɨɛɨɡɧɚɱɚɸɬ ɤɚɤ dx, dy ɢ ɬ.ɞ. Ɉɩɪɟɞɟɥɹɸɬɫɹ ɞɢɮɮɟɪɟɧɰɢɚɥɵ ɩɨ-ɪɚɡɧɨɦɭ, ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɬɨɝɨ, ɹɜɥɹɟɬɫɹ ɥɢ ɜɟɥɢɱɢɧɚ ɧɟɡɚɜɢɫɢɦɨɣ ɩɟɪɟɦɟɧɧɨɣ ɢɥɢ ɮɭɧɤɰɢɟɣ.

64

Ⱦɢɮɮɟɪɟɧɰɢɚɥ ɧɟɡɚɜɢɫɢɦɨɣ ɩɟɪɟɦɟɧɧɨɣ – ɷɬɨ ɥɸɛɨɟ ɟɟ ɩɪɢɪɚɳɟɧɢɟ:

dx 'x.

Ⱦɢɮɮɟɪɟɧɰɢɚɥ ɮɭɧɤɰɢɢ y f(x) ɟɫɬɶ ɩɪɨɢɡɜɟɞɟɧɢɟ ɟɟ ɩɪɨɢɡɜɨɞɧɨɣ f(x) ɧɚ ɞɢɮɮɟɪɟɧɰɢɚɥ ɧɟɡɚɜɢɫɢɦɨɣ ɩɟɪɟɦɟɧɧɨɣ dx:

dy f’(x)udx.

(5.3)

Ⱦɥɹ ɞɢɮɮɟɪɟɧɰɢɚɥɚ ɮɭɧɤɰɢɢ ɢɫɩɨɥɶɡɭɸɬ ɟɳɟ ɢ ɬɚɤɨɟ ɨɛɨɡɧɚɱɟɧɢɟ: d(f(x)).

Ɋɢɫ.5.3 ɩɨɹɫɧɹɟɬ ɝɟɨɦɟɬɪɢɱɟɫɤɢɣ ɫɦɵɫɥ ɞɢɮɮɟɪɟɧɰɢɚɥɚ ɮɭɧɤɰɢɢ. Ʉɚɤ ɜɢɞɢɦ, dy – ɷɬɨ ɩɪɢɪɚɳɟɧɢɟ, ɤɨɬɨɪɨɟ ɩɨɥɭɱɚɟɬ ɨɪɞɢɧɚɬɚ ɤɚɫɚɬɟɥɶɧɨɣ ɤ f(x) ɜ ɬɨɱɤɟ x ɩɪɢ ɞɚɧɧɨɦ ɩɪɢɪɚɳɟɧɢɢ ɚɪɝɭɦɟɧɬɚ dx. Ƚɨɜɨɪɹɬ, ɱɬɨ dy ɟɫɬɶ ɝɥɚɜɧɚɹ ( ɥɢɧɟɣɧɚɹ) ɱɚɫɬɶ ɩɪɢɪɚɳɟɧɢɹ ɮɭɧɤɰɢɢ 'y. ɗɬɨ ɨɛɴɹɫɧɹɟɬɫɹ ɬɟɦ, ɱɬɨ ɩɪɢ ɦɚɥɵɯ dx ɩɪɢɪɚɳɟɧɢɟ ɮɭɧɤɰɢɢ 'y ɩɨɱɬɢ

ɫɨɜɩɚɞɚɟɬ ɫ ɟɟ ɞɢɮɮɟɪɟɧɰɢɚɥɨɦ: 'y#dy (ɪɢɫ.5.3).

y

y f(x)

'y dy

dx

x

Ɋɢɫ.5.3

ɂɡ ɨɩɪɟɞɟɥɟɧɢɹ ɞɢɮɮɟɪɟɧɰɢɚɥɚ ɮɭɧɤɰɢɢ (5.3) ɩɨɥɭɱɚɸɬ ɟɳɟ ɢ ɬɚɤɢɟ ɨɛɨɡɧɚɱɟɧɢɹ ɞɥɹ ɟɟ ɩɪɨɢɡɜɨɞɧɨɣ:

f’(x) dy d(f(x)) . dx dx

ɉɪɚɜɢɥɚ ɜɵɱɢɫɥɟɧɢɹ ɩɪɨɢɡɜɨɞɧɵɯ ɡɚɞɚɸɬ ɢ ɩɪɚɜɢɥɚ ɜɵɱɢɫɥɟɧɢɹ ɞɢɮɮɟɪɟɧɰɢɚɥɨɜ:

1.ȿɫɥɢ A,B const, ɬɨ d(Auf(x) Bug(x)) Audf(x) Budg(x).

2.Ⱦɢɮɮɟɪɟɧɰɢɚɥ ɩɪɨɢɡɜɟɞɟɧɢɹ ɮɭɧɤɰɢɣ:

d(f(x)ug(x)) df(x)ug(x) f(x)udg(x).

3. Ⱦɢɮɮɟɪɟɧɰɢɚɥ ɨɬɧɨɲɟɧɢɹ ɮɭɧɤɰɢɣ:

§

 

·

df(x)ug(x) f(x)udg(x) .

f(x)

¸

¨

 

¸

 

g2(x)

 

©g(x)¹

 

ɉɨɧɹɬɢɟ ɞɢɮɮɟɪɟɧɰɢɚɥɚ

ɲɢɪɨɤɨ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜ ɩ ɪ ɢ ɛ ɥ ɢ -

ɠ ɟ ɧ ɧ ɵ ɯ ɜ ɵ ɱ ɢ ɫ ɥ ɟ ɧ ɢ ɹ ɯ .

Ɍɚɤ, ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɩɨɝɪɟɲɧɨɫɬɢ

ɮɭɧɤɰɢɢ 'y, ɨɛɭɫɥɨɜɥɟɧɧɨɣ ɩɨɝɪɟɲɧɨɫɬɶɸ ɟɟ ɚɪɝɭɦɟɧɬɚ 'x, ɩɨɥɶɡɭɸɬɫɹ ɮɨɪɦɭɥɨɣ:

'y#dy f’(x)u'x.

(5.4)

65

ȼɵɱɢɫɥɢɦ, ɤ ɩɪɢɦɟɪɭ, ɩɨɝɪɟɲɧɨɫɬɶ 'S ɩɥɨɳɚɞɢ ɤɪɭɝɚ S, ɟɫɥɢ ɟɝɨ ɪɚɞɢɭɫ r ɡɚɞɚɟɬɫɹ ɫ ɬɨɱɧɨɫɬɶɸ 'r. ɉɨ ɮɨɪɦɭɥɟ (5.4) ɩɨɥɭɱɢɦ:

'S (Sur2)’u'r 2uSuru'r.

Ɍɚɤ ɤɚɤ ɞɢɮɮɟɪɟɧɰɢɚɥ dy – ɨɫɧɨɜɧɚɹ ɱɚɫɬɶ ɩɪɢɪɚɳɟɧɢɹ ɮɭɧɤɰɢɢ 'y, ɩɪɢ ɦɚɥɵɯ 'x ɢɦɟɟɬ ɦɟɫɬɨ ɩɪɢɛɥɢɠɟɧɧɨɟ ɪɚɜɟɧɫɬɜɨ dy#'y ɢɥɢ ɠɟ

f(x 'x) f(x)#f’(x)u'x.

Ɉɬɫɸɞɚ

f(x 'x)#f(x) f’(x)u'x.

(5.5)

ɉɨɥɭɱɟɧɧɚɹ ɮɨɪɦɭɥɚ ɢɫɩɨɥɶɡɭɟɬɫɹ ɞɥɹ ɩɪɢɛɥɢɠɟɧɧɨɝɨ ɜɵɱɢɫɥɟɧɢɹ ɧɨɜɨɝɨ ɡɧɚɱɟɧɢɹ ɮɭɧɤɰɢɢ f(x 'x), ɤɨɝɞɚ ɡɚɞɚɧɵ ɟɟ ɫɬɚɪɨɟ ɡɧɚɱɟɧɢɟ f(x) ɢ ɜɟɥɢɱɢɧɚ 'x. ɇɚɣɞɟɦ, ɧɚɩɪɢɦɟɪ, ɡɧɚɱɟɧɢɟ 4 16.64 . ɉɨɥɨɠɢɦ,

ɱɬɨ ɡɞɟɫɶ f(x) 4 x . Ɍɨɝɞɚ f’(x) 1 u

4

Ɂɧɚɱɢɬ, ɩɨ ɮɨɪɦɭɥɟ (5.5) ɩɨɥɭɱɢɦ:

4 x , x 'x 16.64, x 16, ɚ 'x 0.64. x

f(x 'x) 4 x 'x #4 x 1 u

4 x u'x

4 x u(1

1

u

'x

).

 

 

4

x

 

4 x

Ɍɟɩɟɪɶ ɥɟɝɤɨ (ɩɪɚɤɬɢɱɟɫɤɢ ɜ ɭɦɟ) ɜɵɱɢɫɥɢɦ

4 16.64 #4 16 u(1 1 u 0.64 ) 2u1.01 2.02.

416

5.4.Машинные алгоритмы вычисления функций

ɉɭɫɬɶ ɮɭɧɤɰɢɹ f(x) ɜ ɡɚɞɚɧɧɨɣ ɬɨɱɤɟ a ɢ ɜ ɧɟɤɨɬɨɪɨɣ ɟɟ ɨɤɪɟɫɬɧɨɫɬɢ ɢɦɟɟɬ ɜ ɫ ɟ ɫɜɨɢ ɩɪɨɢɡɜɨɞɧɵɟ (ɬɨ ɟɫɬɶ ɨɬ ɧɟɟ ɦɨɠɧɨ ɜɡɹɬɶ ɩɪɨɢɡɜɨɞɧɭɸ ɥɸɛɨɝɨ ɩɨɪɹɞɤɚ). Ɍɨɝɞɚ ɷɬɭ ɮɭɧɤɰɢɸ ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɬɚɤɨɣ ɛɟɫɤɨɧɟɱɧɨɣ ɫɭɦɦɨɣ:

f(x)

f(a)

f'(a)

u(x a)

f''(a)

u(x a)2

 

 

 

 

f(n)(a)

1!

 

 

 

(n 1)(a)

2!

 

 

 

 

 

u(x a)

n

 

f

u(x a)

n 1

 

 

 

n!

 

 

(n 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

f(i)(a)

u(x a)i .

 

 

 

 

 

 

(5.6)

 

¦

 

 

 

 

 

 

 

 

i!

 

 

 

 

 

 

 

 

 

 

 

 

i 0

 

 

 

 

 

 

 

 

 

 

 

 

 

Ɂɞɟɫɶ ɤɨɧɫɬɪɭɤɰɢɸ k! ɧɚɡɵɜɚɸɬ ɮɚɤɬɨɪɢɚɥɨɦ:

k! 1u2u3u u(k 1)uk.

66

Ʌɟɝɤɨ ɡɚɦɟɬɢɬɶ, ɱɬɨ (k 1)! k!u(k 1). ȼ ɦɚɬɟɦɚɬɢɤɟ ɫɱɢɬɚɸɬ, ɱɬɨ 0! 1, ɩɨɷɬɨɦɭ ɩɨɫɥɟɞɧɹɹ ɮɨɪɦɭɥɚ ɪɚɛɨɬɚɟɬ ɢ ɩɪɢ k 0.

ɉɪɟɞɫɬɚɜɥɟɧɢɟ f(x) ɮɨɪɦɭɥɨɣ (5.6) ɧɚɡɵɜɚɸɬ ɪɚɡɥɨɠɟɧɢɟɦ ɮɭɧɤɰɢɢ f(x) ɜ ɪɹɞ Ɍɟɣɥɨɪɚ ɜ ɨɤɪɟɫɬɧɨɫɬɢ ɬɨɱɤɢ a. Ʉɚɤ ɜɢɞɢɦ, ɪɹɞ Ɍɟɣɥɨɪɚ ɫɨɫɬɨɢɬ ɢɡ ɛɟɫɤɨɧɟɱɧɨɝɨ ɱɢɫɥɚ ɫɥɚɝɚɟɦɵɯ. ȿɫɥɢ ɠɟ ɜ ɪɚɡɥɨɠɟɧɢɢ (5.6) ɨɝɪɚɧɢɱɢɬɶɫɹ ɤɨɧɟɱɧɵɦ ɱɢɫɥɨɦ ɫɥɚɝɚɟɦɵɯ, ɬɨɝɞɚ ɷɬɨ ɬɨɱɧɨɟ ɪɚɜɟɧɫɬɜɨ ɧɭɠɧɨ ɡɚɦɟɧɢɬɶ ɩɪɢɛɥɢɠɟɧɧɵɦ:

f(x) # M(x) f(a)

f'

(a)

u(x a)

 

f''(a)

u(x a)

2

 

 

f(n)(a)

u(x a)

n

1!

 

 

2!

 

 

 

n!

 

 

 

(i)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

(a)

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¦

f

 

u(x a)i

 

 

¦ui .

 

 

 

 

 

 

 

 

 

 

 

(5.7)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 0

i!

 

 

i 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(i)(a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ɂɞɟɫɶ ui

u(x a)i

– ɫɥɚɝɚɟɦɨɟ ɧɨɦɟɪ i ɜ ɫɭɦɦɟ (5.7).

 

 

 

 

 

 

 

 

i!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ɉɪɢɛɥɢɠɟɧɧɨɟ ɪɚɜɟɧɫɬɜɨ (5.7), ɬɨ ɟɫɬɶ ɭɫɟɱɟɧɧɵɣ ɪɹɞ (5.6), ɢ

ɧɚɡɵɜɚɸɬ ɮɨɪɦɭɥɨɣ Ɍɟɣɥɨɪɚ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ȼɫɟ, ɱɬɨ ɧɟ ɜɨɲɥɨ ɜ ɫɭɦɦɭ (5.7) ɢɡ ɮɨɪɦɭɥɵ (5.6), ɚ ɢɦɟɧɧɨ,

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

f

(i)

(a)

 

 

 

 

 

 

f

(n 1)

([)

 

 

 

 

 

 

f(x) M(x) Rn+1(x)

¦

 

 

u(x a)i

 

 

 

u(x a)(n 1) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i n 1

 

i!

 

 

 

 

 

 

(n 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ɧɚɡɵɜɚɸɬ ɨ ɫ ɬ ɚ ɬ ɨ ɱ ɧ ɵ ɦ

 

ɱ ɥ ɟ ɧ ɨ ɦ

ɪɹɞɚ Ɍɟɣɥɨɪɚ. Ɂɞɟɫɶ [ – ɧɟ-

ɤɨɬɨɪɚɹ ɬɨɱɤɚ ɜɧɭɬɪɢ ɨɬɪɟɡɤɚ [a, x].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ⱦɨɤɚɡɚɧɨ, ɱɬɨ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

f(n 1)([)

 

u(x

a)

(n 1)

0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xoa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ȿɫɥɢ ɩɪɨɢɡɜɨɞɧɚɹ f(n+1)(x) ɩɪɢ nof ɨɫɬɚɟɬɫɹ ɨɝɪɚɧɢɱɟɧɧɨɣ, ɬɨ ɢ

 

 

 

 

 

 

 

lim

 

 

f(n 1)([)

u(x

a)

(n 1)

0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nof (n 1)!

ɉɨɷɬɨɦɭ ɩɪɢ ɨɝɪɚɧɢɱɟɧɧɨɣ ɩɪɨɢɡɜɨɞɧɨɣ f(n+1)(x) ɡɧɚɱɟɧɢɟ f(n+1)([) (ɞɥɹ ɧɟɨɩɪɟɞɟɥɟɧɧɨɝɨ [) ɧɟ ɫɢɥɶɧɨ ɨɬɥɢɱɚɟɬɫɹ ɨɬ ɜɟɥɢɱɢɧɵ f(n+1)(a) (ɡɧɚɱɟɧɢɟ a ɡɚɞɚɧɨ), ɬɨ ɟɫɬɶ

Rn+1(x)# f(n 1)(a) u(x a)(n 1) . (n 1)!

Ɂɧɚɱɢɬ,

67

~f(x) M(x)~# f(n 1)(a) u(x a)(n 1) ~un+1~, (n 1)!

ɢ ɚɛɫɨɥɸɬɧɭɸ ɩɨɝɪɟɲɧɨɫɬɶ ɩɪɟɞɫɬɚɜɥɟɧɢɹ ɮɭɧɤɰɢɢ f(x) ɜ ɨɤɪɟɫɬɧɨɫɬɢ ɬɨɱɤɢ a ɤɨɧɟɱɧɨɣ ɫɭɦɦɨɣ (5.7) ɦɨɠɧɨ ɨɰɟɧɢɬɶ ɜɟɥɢɱɢɧɨɣ ~un+1~ – ɦɨɞɭɥɟɦ ɩɟɪɜɨɝɨ ɢɡ ɨɬɛɪɨɲɟɧɧɵɯ ɫɥɚɝɚɟɦɵɯ ɜ ɪɹɞɟ Ɍɟɣɥɨɪɚ (5.6). Ɉɱɟɜɢɞɧɨ, ɱɬɨ ɫ ɭɜɟɥɢɱɟɧɢɟɦ n ɢ ɩɪɢ ɭɦɟɧɶɲɟɧɢɢ ɪɚɡɧɨɫɬɢ (x a) ɷɬɚ ɩɨɝɪɟɲɧɨɫɬɶ ɫɧɢɠɚɟɬɫɹ.

ȿɫɥɢ ɜ ɮɨɪɦɭɥɟ (5.7) ɩɨɥɨɠɢɬɶ a 0, ɩɨɥɭɱɢɦ ɱɚɫɬɧɵɣ ɫɥɭɱɚɣ ɮɨɪɦɭɥɵ Ɍɟɣɥɨɪɚ, ɤɨɬɨɪɵɣ ɧɚɡɵɜɚɟɬɫɹ ɮɨɪɦɭɥɨɣ Ɇɚɤɥɨɪɟɧɚ:

n

(i)

(0)

 

 

M(x) ¦

f

 

u xi .

(5.8)

 

 

 

i 0

i!

 

 

 

 

 

Ɏɨɪɦɭɥɚ Ɇɚɤɥɨɪɟɧɚ ɨɬɥɢɱɚɟɬɫɹ ɨɬ ɮɨɪɦɭɥɵ Ɍɟɣɥɨɪɚ ɥɢɲɶ ɧɚɱɚɥɨɦ ɨɬɫɱɟɬɚ ɩɟɪɟɦɟɧɧɨɣ x. ȿɫɥɢ ɜ ɮɨɪɦɭɥɟ (5.7) ɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜɟɥɢɱɢɧɵ x ɩɟɪɟɧɟɫɬɢ ɜ ɬɨɱɤɭ a, ɬɨ ɨɧɚ ɩɪɟɨɛɪɚɡɭɟɬɫɹ ɜ ɮɨɪɦɭɥɭ (5.8). ɉɨɷɬɨɦɭ ɧɢɠɟ ɩɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɮɨɪɦɭɥɵ (5.7) ɦɵ ɛɭɞɟɦ ɩɨɥɚɝɚɬɶ, ɱɬɨ a 0.

ɍɤɚɠɟɦ ɧɚ ɨɫɧɨɜɧɵɟɞɨɫɬɨɢɧɫɬɜɚ ɩɪɟɞɫɬɚɜɥɟɧɢɹɮɭɧɤɰɢɢ f(x) ɮɨɪɦɭɥɨɣ Ɍɟɣɥɨɪɚ:

9ɜ ɮɨɪɦɭɥɟ (5.7) ɩɪɢ ɜɵɱɢɫɥɟɧɢɢ ɡɧɚɱɟɧɢɹ M(x) ɞɥɹ f(x) ɥɸɛɨɝɨ ɜɢɞɚ (!) ɧɚɞ ɡɚɞɚɧɧɵɦ x ɩɪɨɢɡɜɨɞɹɬɫɹ ɬɨɥɶɤɨ ɚɪɢɮɦɟɬɢɱɟɫɤɢɟ ɞɟɣɫɬɜɢɹ,

9ɩɨɝɪɟɲɧɨɫɬɶ ɩɪɢɛɥɢɠɟɧɢɹ ɮɭɧɤɰɢɢ f(x) ɮɨɪɦɭɥɨɣ (5.7) ɪɟɝɭɥɢɪɭɟɦɚ. ȿɫɥɢ ɬɨɱɧɨɫɬɶ ɜɵɱɢɫɥɟɧɢɹ ɮɭɧɤɰɢɢ H ɡɚɞɚɧɚ, ɬɨ ɤɨɥɢɱɟɫɬɜɨ ɫɥɚɝɚɟɦɵɯ (n 1) ɜ ɮɨɪɦɭɥɟ (5.7) ɭɜɟɥɢɱɢɜɚɸɬ ɞɨ ɬɟɯ ɩɨɪ, ɩɨɤɚ ɧɟ ɜɵɩɨɥɧɢɬɫɹ ɭɫɥɨɜɢɟ

~un+1~ f(n 1)(0) ux(n 1) d H,

(n 1)!

9 ɨɛɵɱɧɨ ɫɨɫɟɞɧɢɟ ɫɥɚɝɚɟɦɵɟ ui ɢ ui+1 ɜ ɫɭɦɦɟ (5.7) ɫɜɹɡɚɧɵ ɩɪɨɫɬɵɦ ɫɨɨɬɧɨɲɟɧɢɟɦ. ɉɨɷɬɨɦɭ ɞɥɹ ɜɵɱɢɫɥɟɧɢɹ ɨɱɟɪɟɞɧɨɝɨ ɫɥɚɝɚɟɦɨɝɨ ui+1 ɢɫɩɨɥɶɡɭɟɬɫɹ ɩɪɟɞɵɞɭɳɟɟ, ɭɠɟ ɧɚɣɞɟɧɧɨɟ ui.

ɂɦɟɧɧɨ ɩɨɷɬɨɦɭ ɪɚɡɥɨɠɟɧɢɟ ɮɭɧɤɰɢɣ ɜ ɪɹɞ Ɍɟɣɥɨɪɚ ɫɨɫɬɚɜɥɹɟɬ ɨɫɧɨɜɭ ɩɨɫɬɪɨɟɧɢɹ ɦɚɲɢɧɧɵɯ ɚɥɝɨɪɢɬɦɨɜ ɢɯ ɜɵɱɢɫɥɟɧɢɹ.

Ɋɚɡɪɚɛɨɬɚɟɦ ɞɥɹ ɩɪɢɦɟɪɚ ɚɥɝɨɪɢɬɦ ɜɵɱɢɫɥɟɧɢɹ ɮɭɧɤɰɢɢ y f(x) cos(x).

ɋɧɚɱɚɥɚ ɪɚɡɥɨɠɢɦ ɡɚɞɚɧɧɭɸ ɮɭɧɤɰɢɸ ɜ ɪɹɞ Ɍɟɣɥɨɪɚ. ɂɦɟɟɦ f(x) cos(x). ȼɵɱɢɫɥɹɟɦ ɫɥɚɝɚɟɦɵɟ ɜ ɫɭɦɦɟ (5.7):

68

f(x)

cos(x),

f(0)

1,

u0

1,

 

 

 

 

f’(x)

sin(x),

f’(0)

0,

u1

0,

 

 

2

 

f

(2)

 

 

 

(2)

 

 

 

 

 

x

 

(x)

cos(x),

f

(0)

1,

u2

 

 

 

 

,

2!

f(3)(x)

sin(x),

f(3)(0)

0,

u3

0,

 

 

 

 

 

f

(4)

 

 

 

(2)

 

 

 

 

x4

 

 

(x)

cos(x),

f

(0)

1,

u2

 

 

.

 

4!

 

Ʉɚɤ ɜɢɞɢɦ, ɞɥɹ f(x) cos(x) ɜ ɪɚɡɥɨɠɟɧɢɢ (5.7) ɜɫɟ ɧɟɱɟɬɧɵɟ ɫɥɚɝɚɟɦɵɟ ɡɚɜɟɞɨɦɨ ɪɚɜɧɵ ɧɭɥɸ. Ɉɬɛɪɨɫɢɦ ɢɯ, ɚ ɨɫɬɚɜɲɢɟɫɹ ɫɥɚɝɚɟɦɵɟ ɩɪɨɧɭɦɟɪɭɟɦ ɡɚɧɨɜɨ. Ɍɚɤ ɩɨɥɭɱɢɦ ɫɥɟɞɭɸɳɭɸ ɮɨɪɦɭɥɭ ɪɚɡɥɨɠɟɧɢɹ ɮɭɧɤɰɢɢ f(x) cos(x) ɜ ɪɹɞ Ɍɟɣɥɨɪɚ M(x):

 

x2

 

x4

n

 

x2un

y cos(x)#M(x) 1

 

 

 

1

u

 

2!

4!

n!

 

 

 

 

n

i

 

x2ui

¦

1

u

 

2ui !

i 0

 

 

 

 

 

n

 

¦ui

(5.9)

i 0

 

Ⱥ ɬɟɩɟɪɶ ɪɚɡɪɚɛɚɬɵɜɚɟɦ ɩɪɨɰɟɞɭɪɭ ɜɵɱɢɫɥɟɧɢɹ ɜɟɥɢɱɢɧɵ y f(x) cos(x) ɩɨɮɨɪɦɭɥɟ (5.9) ɞɥɹɡɚɞɚɧɧɨɝɨ x ɫɬɪɟɛɭɟɦɨɣɬɨɱɧɨɫɬɶɸ H.

ɇɚɤɨɩɥɟɧɢɟ ɫɭɦɦɵ (5.9) ɨɪɝɚɧɢɡɭɟɦ ɬɚɤ: ɤ ɩɪɟɞɵɞɭɳɟɣ ɫɭɦɦɟ yi ɩɪɢɛɚɜɥɹɟɦ ɨɱɟɪɟɞɧɨɟ ɫɥɚɝɚɟɦɨɟ ui ɢ ɩɨɥɭɱɚɟɦ ɧɨɜɨɟ ɡɧɚɱɟɧɢɟ ɫɭɦɦɵ yi+1. Ɂɚɬɟɦ ɜɵɱɢɫɥɹɟɦ ɫɥɟɞɭɸɳɟɟ ɫɥɚɝɚɟɦɨɟ ui+1. ɇɨ ɩɪɟɠɞɟ ɧɚɣɞɟɦ ɫɜɹɡɶ ɦɟɠɞɭ ɫɨɫɟɞɧɢɦɢ ɫɥɚɝɚɟɦɵɦɢ ui+1 ɢ ui ɜ ɷɬɨɣ ɫɭɦɦɟ:

ui 1

( 1)i 1 u

x2u(i 1)

 

(2u(i 1))!

 

 

 

 

 

 

( 1)i u

x2ui

 

u( 1)u

 

 

x2

 

 

(2ui 1)u(2ui 2)

 

 

 

(2ui)!

ui u

 

 

x2

 

.

 

 

 

 

 

 

 

 

 

2 u(i 1) u 2 ui

Ɂɞɟɫɶ i 0,1,2,

 

 

, y0

0, u0 1.

 

 

 

Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɞɥɹ ɡɚɞɚɧɧɨɝɨ x ɩɪɨɰɟɞɭɪɚ ɜɵɱɢɫɥɟɧɢɹ ɜɟɥɢɱɢɧɵ y cos(x) ɫ ɬɨɱɧɨɫɬɶɸ H ɨɩɢɫɵɜɚɟɬɫɹ ɫɥɟɞɭɸɳɢɦɢ ɫɨɨɬɧɨɲɟɧɢɹɦɢ:

­yi 1

yi ui,

 

 

°

 

 

x2

(5.10)

®

 

 

°ui 1

ui u

 

 

,

2ui 1 u 2ui 2

¯

 

 

i 0,1,2,..., ɩɨɤɚ ~ui~!H,

69

y0 0, u0 1.

ɇɚ ɪɢɫ.5.4 ɩɨɤɚɡɚɧ ɝɪɚɮ ɚɥɝɨɪɢɬɦɚ ɪɟɲɟɧɢɹ ɩɨɫɬɚɜɥɟɧɧɨɣ ɡɚɞɚɱɢ. ȼ ɛɥɨɤɟ 0 ɡɚɞɚɸɬ ɡɧɚɱɟɧɢɟ ɚɪɝɭɦɟɧɬɚ x ɢ ɬɪɟɛɭɟɦɭɸ ɬɨɱɧɨɫɬɶ ɜɵɱɢɫɥɟɧɢɹ H. ȼ ɛɥɨɤɟ 1 ɡɚɞɚɸɬ ɧɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɥɹ ɮɨɪɦɭɥɵ (5.10), ɚ ɢɦɟɧɧɨ, ɢɫɯɨɞɧɨɟ ɡɧɚɱɟɧɢɟ y0 ɜ ɫɭɦɦɟ (5.9), ɩɟɪɜɨɟ ɫɥɚɝɚɟɦɨɟ u0 ɜ ɧɟɣ, ɫɱɟɬɱɢɤɚ i ɬɟɤɭɳɟɝɨ ɱɢɫɥɚ ɫɥɚɝɚɟɦɵɯ ɜ ɫɭɦɦɟ (5.9). ȼ ɛɥɨɤɟ 2 ɩɪɨɜɟɪɹɟɬɫɹ ɭɫɥɨɜɢɟ ~u~!H. ɉɨɤɚ ɨɧɨ ɜɟɪɧɨ, ɩɟɪɟɣɬɢ ɤ ɛɥɨɤɭ 3 (ɩɪɨɞɨɥɠɢɬɶ ɧɚɤɨɩɥɟɧɢɟ ɫɭɦɦɵ). Ʉɚɤ ɬɨɥɶɤɨ ɷɬɨ ɭɫɥɨɜɢɟ ɧɚɪɭɲɟɧɨ, ɩɟɪɟɣɬɢ ɤ ɛɥɨɤɭ 4. Ȼɥɨɤ 3 ɜɤɥɸɱɚɟɬ ɜ ɫɟɛɹ ɫɨɨɬɧɨɲɟɧɢɹ (5.10). Ɉɬɦɟɬɢɦ, ɱɬɨ ɜɫɟ ɩɟɪɟɦɟɧɧɵɟ ɪɟɲɚɟɦɨɣ ɡɚɞɚɱɢ – ɩɪɨɫɬɵɟ, ɩɨɷɬɨɦɭ ɢɧɞɟɤɫɵ ɭ ɧɢɯ ɭɛɪɚɧɵ, ɬɨ ɟɫɬɶ ɜɦɟɫɬɨ yi+1 yi ui ɡɚɩɢɫɵɜɚɟɦ y: y u, ɱɬɨ ɨɡɧɚɱɚɟɬ: ɧɨɜɨɟ ɡɧɚɱɟɧɢɟ y (ɫɥɟɜɚ ɨɬ ɫɢɦɜɨɥɚ: ) ɟɫɬɶ ɟɝɨ ɫɬɚɪɨɟ ɡɧɚɱɟɧɢɟ (ɫɩɪɚɜɚ ɨɬ ɫɢɦɜɨɥɚ : ) ɩɥɸɫ ɨɱɟɪɟɞɧɨɟ ɫɥɚɝɚɟɦɨɟ u. Ɂɞɟɫɶ ɠɟ ɭɜɟɥɢɱɢɜɚɟɦ i – ɩɨɤɚɡɚɧɢɹ ɫɱɟɬɱɢɤɚ ɞɥɹ ɱɢɫɥɚ ɫɥɚɝɚɟɦɵɯ ɜ ɫɭɦɦɟ ɞɥɹ y.

ȼɵɩɨɥɧɢɦ ɪɭɱɧɭɸ ɩɪɨɤɪɭɬɤɭ ɷɬɨɝɨ ɚɥɝɨɪɢɬɦɚ ɞɥɹ x S ɢ H 0.025.

Ⱦɟɣɫɬɜɭɟɦ ɩɨ ɪɢɫ. 5.4:

 

 

 

 

 

3

 

 

 

 

 

 

 

 

0: x

1.047;

H

0.025.

 

 

 

 

0

1: y

0;

 

u

1.000;

i

0.

 

 

 

 

Ɂɚɞɚɬɶ x, H

 

2: 1.000!0.025? Ⱦɚ.

i

1.

y: 0, u: 1, i:

0 1

 

3: y

1.000;

u

0.548;

 

 

 

 

2: 0.548!0.025? Ⱦɚ.

i

2.

 

~u~!H 2

0

 

3: y

0.452;

u

0.050;

 

1

 

 

2: 0.050!0.025? Ⱦɚ.

 

 

 

3

 

 

 

 

y: y u,

 

3: y

0.502; u 0.002;

i

3.

 

 

 

 

x2

 

 

2: 0.002!0.025? ɇɟɬ.

 

u: uu

,

 

 

 

 

(2ui 1)u(2ui 2)

 

 

 

 

 

 

 

 

 

 

4: y

0.502.

 

 

 

 

 

 

i: i 1.

 

Ʉɚɤ ɜɢɞɢɦ, ɜɫɟɝɨ ɬɪɟɯ ɫɥɚɝɚɟɦɵɯ ɜ

 

 

 

 

 

ɫɭɦɦɟ (5.10) ɨɤɚɡɚɥɨɫɶ ɞɨɫɬɚɬɨɱɧɨ

 

 

 

ȼɵɜɨɞ y 4

ɞɥɹ ɜɵɱɢɫɥɟɧɢɹ y cos(

S

) ɫ ɬɨɱɧɨ-

 

 

 

3

 

 

 

 

 

ɫɬɶɸ H 0.025.

 

 

 

 

 

 

Ɋɢɫ.5.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70