Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
для студентов гл.7-10.doc
Скачиваний:
260
Добавлен:
02.03.2016
Размер:
48.39 Mб
Скачать

§ 3. Правильные многогранники. Симметрия в пространстве.

. Правильные многогранники.

Определение. Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и то же число рёбер.

Достаточно легко доказать, что правильных многогранников существует всего 5: правильный тетраэдр, правильный гексаэдр, правильный октаэдр, правильный икосаэдр, правильный додекаэдр. Этот поразительный факт дал повод древним мыслителям соотнести правильные многогранники и первоэлементы бытия.

Есть много интересных приложений теории многогранников. Одним из выдающихся результатов в данной области является теорема Эйлера, справедливая не только для правильных, но и для всех выпуклых многогранников.

Теорема: для выпуклых многогранников справедливо соотношение: Г + В – Р = 2, где В – число вершин, Г – число граней, Р – число ребер.

Название многогранника

Количество граней (Г)

Количество вершин (В)

Количество рёбер (Р)

Г + В – Р

Первоэлемент бытия

тетраэдр

4

4

6

2

Огонь

гексаэдр

6

8

12

2

Земля

октаэдр

8

6

12

2

Вода

икосаэдр

20

12

30

2

Воздух

додекаэдр

12

20

30

2

Вселенная

четырехугольная пирамида

5

5

8

2

n – угольная пирамида

n + 1

n + 1

2 n

2

треугольная призма

5

6

9

2

n – угольная призма

n + 2

2n

3n

2

Правильные многогранники обладают многими интересными свойствами. Одним из самых поразительных свойств является их двойственность: если соединить отрезками центры граней правильного гексаэдра (куба), то получится правильный октаэдр; и, наоборот, если соединить отрезками центры граней правильного октаэдра, то получится куб. Аналогично, двойственны правильные икосаэдр и додекаэдр. Правильный тетраэдр двойственен сам себе, т.е. если соединить отрезками центры граней правильного тетраэдра, то снова получится правильный тетраэдр.

. Симметрия в пространстве.

Определение. Точки А и В называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АВ. Точка О считается симметричной самой себе.

Определение. Точки А и В называются симметричными относительно прямой а (ось симметрии), если прямая а проходит через середину отрезка АВ и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе.

Определение. Точки А и В называются симметричными относительно плоскости β (плоскости симметрии), если плоскость β проходит через середину отрезка АВ и перпендикулярна этому отрезку. Каждая точка плоскости β считается симметричной самой себе.

Определение. Точка (прямая, плоскость) называются центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно неё некоторой точке той же фигуры.

Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией. Центр, ось и плоскости симметрии многогранника называются элементами симметрии этого многогранника.

Пример. Правильный тетраэдр:

– не имеет центра симметрии;

– имеет три оси симметрии – прямые, проходящие через середины двух противоположных рёбер;

- имеет шесть плоскостей симметрии – плоскости, проходящие через ребро перпендикулярно противоположному (скрещивающемуся с первым) ребру тетраэдра.

Вопросы и задачи

  1. Сколько центров симметрии имеет:

а) параллелепипед;

б) правильная треугольная призма;

в) двугранный угол;

г) отрезок;

д) шар?

  1. Сколько осей симметрии имеет:

а) отрезок;

б) правильный треугольник;

в) круг;

г) шар?

  1. Сколько плоскостей симметрии имеет:

а) правильная четырёхугольная призма, отличная от куба;

б) правильная четырёхугольная пирамида;

в) правильная треугольная пирамида;

г) шар?

  1. Сколько и каких элементов симметрии имеют правильные многогранники:

а) правильный тетраэдр;

б) правильный гексаэдр;

в) правильный октаэдр;

г) правильный икосаэдр;

д) правильный додекаэдр?