Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_voprosy_физика.docx
Скачиваний:
241
Добавлен:
29.02.2016
Размер:
5.6 Mб
Скачать
  1. Движение заряженных частиц в электрических и магнитных полях.

Для вывода общих закономерностей будем считать, что магнитное поле однородно и на частицы электрическое поле не действует. Если заряженная частица движется в магнитном поле со скоростью вдоль линий магнитной индукции, то уголмежду векторамииравен 0 или. Тогда сила Лоренца равна 0, т.е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно.

Если заряженная частица движется в магнитном поле со скоростью , перпендикулярной вектору, то сила Лоренцапостоянная по модулю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиускоторой определяется из условия, откуда

.

Период вращения частицы, т.е. время , за которое она совершает один полный оборот,

.

Подставив сюда предыдущее выражение, получим

,

т.е. период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду частицы, и магнитной индукцией поля, но не зависит от ее скорости (при). На этом основано действие циклических ускорителей заряженных частиц.

Если скорость заряженной частицы направлена под угломк вектору, то ее движение можно представить в виде суперпозиции: 1) равномерного прямолинейного движения вдоль поля со скоростью; 2) равномерного движения со скоростьюпо окружности в плоскости, перпендикулярной полю. Радиус окружности определяется формулой. В результате сложения обоих движений возникает движение по спирали, ось которой параллельна магнитному полю. Шаг винтовой линии

.

Подставив в последнее выражение формулу периода, получим:

.

Направление, в котором закручивается спираль, зависит от знака заряда частицы.

Если скорость заряженной частицы составляет уголс направлением векторанеоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, тоиуменьшаются с ростом. На этом основана фокусировка заряженных частиц в магнитном поле.

  1. Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона.

Как уже обсуждалось, на контакте двух металлов возникает внутренняя разность потенциалов. Если температуры обоих спаев равны, то и разности потенциалов равны. В случае разницы температур термоЭДС равна сумме внутренних разностей потенциалов на контактах: . При другом соотношении температур, соответственно изменяется величина и направление термоэлектрического тока.

В 1834 г. Ж.Пельтье обнаружил, что при прохождении через контакт двух различных проводников электрического тока, в зависимости от его направления, помимо тепла Джоуля-Ленца выделяется или поглощается дополнительная теплота. Таким образом явление Пельтье является обратным по отношению к эффекту Зеебека.

Термоэлектродвижущей силой называется ЭДС, которую вводят для характеристики этого явления. Величина термоЭДС пропорциональна разности температур спаев двух контактов:

, где ~10-5 В/К. Например, термоЭДС для пары медь-константан 4,25мВ при разности температур 100 К.

РИС.215 РИС.216 РИС.217 РИС.218

В отличие от теплоты Джоуля-Ленца, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока.

, где П – коэффициент Пельтье, зависящий от химической природы металлов и температуры

Согласно наблюдениям Пельтье, при пропускании тока через те же два металла, что и в опыте Зеебека, но с одинаковой температурой спаев, один из них нагревается, а другой охлаждается. Если направление тока совпадает с термотоком, то нагревается спай В и охлаждается спай А (рис.216), а если направление тока противоположно, то наоборот.

Определить коэффициент Пельтье можно при калориметрических измерениях количества теплоты в спаях двух металлов (рис.217). При пропускании тока в указанном направлении через контакт меди и висмута, в первом сосуде выделяется , а во втором. Следовательно:. Для металлов коэффициент Пельтье ~ 10-3-10-2 В, а для полупроводников ~ 0,003-0,3 В.

Объясняется явление Пельтье тем, что при переходе электрона из одного металла в другой изменяется его полная энергия, а, следовательно, в одном спае внутренняя энергия переходит в энергию электронов, а в другом энергия электронов отдается кристаллической решетке, что соответствует закону сохранения энергии.

При малой силе тока теплота Пельтье может превышать теплоту Джоуля-Ленца, что используется в термоэлектрических полупроводниковых холодильниках, созданных впервые в 1954 г. под руководством А.Ф.Иоффе, а также в других приборах.

В.Томсон теоретически обосновал, что при прохождении тока по неравномерно нагретому проводнику должно происходить дополнительное выделение или поглощение теплоты. Проведенный им для проверки эксперимент получил название явление Томсона.

Суть эксперимента состояла в том, что концы двух металлических стержней поддерживались при различной температуре, а по цепи, в которую стержни были подсоединены, пропускался постоянный ток (рис. 218). Без тока точки 1 и 2 имели одинаковую температуру, а при пропускании тока между точками 1 и 2 регистрировалась разница температур. Выделение или поглощение тепла зависело от химической природы проводников и соотношения градиента температуры и направления тока.

Например, для цинка наблюдалось выделение тепла, если возрастание температуры совпадало с направлением силы тока, а для железа – наоборот.

Эффект Томсона, как и другие термоэлектрические явления, наиболее корректно и количественно обосновывается в рамках квантовых представлений об энергетических состояниях электрона при различных условиях в кристаллической структуре.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]