Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

khor32

.pdf
Скачиваний:
26
Добавлен:
29.02.2016
Размер:
8.16 Mб
Скачать

1.3. Первые электронные вычислительные машины

тeктypным достоинством ЭВМ M-Mark 1 было и то, что в ней peaлизoвывa-

лacь операция условного перехода (позволявшая изменять ход вычиcли-

тeльнoro процесса).

1.3.2. Вычислительная машина EDSAC

Машина EDSAC (Electronic Delay Storage Automatic Calculator

электронный автоматический вычислитель на линиях задержки) является второй ЭВМ c хранимой программой. Она была построена М. Уилксом

(М. Wilkes) в 1949 г. в Кембриджском университете (Великобритания).

Вычислительную машину EDSAC характеризовали следующие пока-

затели: тактовая частота 500 КГц; быстродействие 14 000 и 117 опер./c соответственно при сложении и умножении 17-разрядных двоичных чисел c фиксированной запятой; емкость памяти 18 тыс. бит.

Следует считать, что EDSAC является первой ЭВМ c фоннеймановской архитектурой. Синтез функциональной структуры EDSAC основы-

вaлся на работах дж. фон Неймана [1].

B машине EDSAC впервые была применена память на ртyтных лини-

ях задержки. Она состояла из 32 ртутных линий задержки, каждая из которых имела емкость 576 бит. Эта ЭВМ была 17-разрядной (однако в ней была реализована возможность обрабатывать слова и двойной длины). Сложение

17-разрядных чисел в EDSAC занимало 0,07 мс, a умножение 8,5 мс.

Ввод данных в EDSAC производился c перфоленты, a вывод результа-

тов на пишyщyю машинку.

Работы по созданию первых ЭВМ в Советском Союзе велись независимо и параллельно c западными разработками. Первая отечественнаямашина МЭСМ была построена в период c 1948 г. по 1951 г., по своим архи-

тектypным возможностям она не уступала EDVAC [2-4].

Компьютер EDVAC по существу стал одним из прототипов всех ЭВМ,

разработанных в дальнейшем на Западе. Рассмотрим архитектурные воз-

можности и функциональную структуру EDVAC.

1.3.3. Вычислительная машина EDVAC

Конструирование и изготовление машины EDVAC (Electronic Discrete Variable Automatic Computer электронный автоматический вьчислитель

для дискретных величин) было осуществлено в 1944-1950 гг. в Электротех-

нической школе Мура Пенсильвaнского университета США (Moore School of Electrical Engineering of the University of Pennsylvania).

В основу ЭВМ были положены оригинальные принципы работы и решения no функциональной структуре и элементной базе, полученные

2-685

33

1.Предыстория вычислительнс й техники

у– Д. Мочли, П. Эккерто м и Дж. фон Нейманом. Автоматизация вычислений была одной из основных

AY

парадигм при проектировании машины: EDVAC

 

это автоматический : Компьютер (Automatic Сот-

=t---

puter), т. e. ЭВМ, способная хранить в своей памя-

УВьпс ^-

ти программу вычислжий.

о

Машина EDVAC вступила в строй в 1950 г.

ВЗУ

(хотя усовершенствоЕ.ания вносились до 1952 г.).

Рис. 1.3. Функциональ-

ная структура EDVAC:

УУ — центральное управ-

ляющее устройство; АУ —

арифмeтическое устройство; ОЗУ — оперативное

запоминающее устройство;

УВх — входной узел;

УВых — выходной узел;

ВЗУ — внешнее запоминающее устройство; = — данные; -+ — команды и

управляющие сигналы

Отметим некогорые показатели EDVAC:

тактовая частота 1 МГц (на порядок выше, чем в

ENIAC); быстродействие 1000 опер./c над 32-раз-

рядными двоичными числами; емкость оператив-

ной памяти 32 76;3 байт; количество электронных ламп —3000.

Функциональная структура машины

EDVAC. Вычислител: уная машина EDVAC (рис. 1.3)

состояла из центрагьного арифметического устройства (АУ), опера тивного запоминающего устройства (ОЗУ), внеш Них запоминающих устройств (ВЗУ), входного и выходного узлов (YBх, УВых) и центрального упраь,ляющего устройства (УУ).

B отличие от ENIAC данная ЭВМ была последовательной машиной, она не

могла выполнять две логические или арифмети ческие операции одновременно. B то время это было технико-экономически обосновано.

Арифметическое устройство предназнаи алось для выполнения опера-

., ции сложения, вычитания, умножения, деления, извлечения квадратного кор-

ня, для преобразования чисел из двоичной системы счисления в десятичную и обратно, для пересылок чисел из одних регистр ов АУ в другие, a также между ОЗУ и регистрами АУ и для осуществления вь [бора одного из двух чисел в за- висимости от знака третьего числа. После, дняя операция использовалась

для передачи управления (условного перехода) от одной команды программы к другой. Числа в АУ обрабатывались последо аательно, начиная c последнего значащего разряда, и в каждый момент времени выполнялась только одна операция. Регистры АУ представляют собой линии задержки на одно 32-раз- рядное двоичное слово.

Память (ОЗУ) содержала до 256 линий задержки, каждая из которых была способна хранить 32 слова, имеющих 32 двоичных разряда, a также переключательную схему, связывающую ячей ки памяти c остальной частью машины. Память предназначалась для хранег:ия начальных и граничных ус-

ловий для дифференциальных уравнений в частных производных, произвольных числовых функций, промежуточных результатов вычислений, a

34

1.3. Первые электронные вычислительные машины

также программы (последовательности команд), управляющей ходом вы-

числении.

Внешние ЗУ были рассчитаны на следующие носители информации: перфокарты, бумажные перфоленты, магнитные ленты, фотопленку. Пред-

полагалось использовать ВЗУ в качестве дополнительной медленнодействующей памяти, a также для ввода и вывода информации.

Следует подчеркнуть, что память EDVAC ( как и в EDSAC) была по-

следовательнои, слова считывались из нее и записывались в нее последовательно бит за битом.

Входной узел предназначался для пересылки информации из ВЗУ в ОЗУ, выходной из ОЗУ в ВЗУ. B оперативном запоминающем устройстве использовалась двоичная система счисления, a в ВЗУ десятичная.

Устройство управления предназначалось для координации работы остальных устройств ЭВМ, в частности, оно формировало поток команд в АУ. Синхронизация работы всех устройств ЭВМ осуществлялась от единого источника импульсов, названного «часами» (сейчас это генератор тактовых или синхронизирующих импульсов).

B машине EDVAC первый двоичный разряд каждого слова служил

для идентификации команд и чисел, причем единица соответствовала ко-

манде, a нуль числу. B EDVAC использовались одноадресные команды, для задания кода операции и адреса операнда в ОЗУ отводилось соответственно 8 и 13 разрядов.

Рассмотрим типичный фрагмент программы обработки числовых данных и работу устройств ЭВМ. Пусть в АУ находится первое слагаемое, a в регистрах или ячейках ОЗУ a, (a + 1) и (a + 2) размещаются соответствен-

но команда, задающая операцию сложения и адрес 13, второе слагаемое и команда, которую предстоит выполнить вслед за сложением. Адекватной последовательностью действий ЭВМ будет следующее: пересылка команды

из ячейки a в центральное УУ, передача слагаемого из (a + 1) в АУ, выпол-

нение операции сложения в АУ, запись суммы в ячейку R и, наконец, вы-

полнение команды из ячейки (a + 2).

Наряду c командой условного перехода (описанной выше) в машине

EDVAC имелась команда безусловной передачи управления, именно коман-

да c адресом y, обеспечивавшая возможность для центрального УУ извлече-

ния следующей команды из ячейки y ОЗУ. Кроме того, в EDVAC была за-

ложена возможность автоматической модификации адреса в команде. Последнее достигалось следующим образом:

• при пересылке некоторого числа из АУ в ячейку b ОЗУ осуществлялся предварительный просмотр ее содержимого;

2*

35

1.Предыстория вычислительной техники

если в b была команда (т. e. слово c единичным первым разрядом), то вместо 13 адресных разрядов содержимого этой ячейки записывались

13 первых значащих двоичных разрядов результата.

Таким образом, машина EDVAC была ,голностью автоматическим

программируемым вычислительным средство .

Анализ машины EDVAC. Машина имела жесткую функциональную структуру. По своей архитектуре EDVAC отн эсится к классу SISD (Single Instruction stream / Single Data stream), если следовать классификации М. Флинна. В машине EDVAC одиночный по-,ок команд обрабатывал оди-

ночный поток данных (см. рис. 1.3).

Архитектурные особенности машины EDVAC:

SISД-архитектура, синхронный метод уп авления устройствами;

автоматизация вычислений (возможность хранения программы в памяти и ее автоматической модификации);

последовательный способ обработки информации;

фиксированность структуры (невозможность даже ручного реконфи-

гурирования, за исключением ВЗУ);

конструктивная неоднородность.

Архитектурные решения , положенные в о снову EDVAC, привели к про-

стоте ее реализации: потребовалось около 3000 электронных ламп (вместо 18 000 в ENIAC). Уровень сложности и достигнутые технические характеристики (показатели производительности, емкости памяти и надежности) ЭВМ

вполне отвечали ypовню техники и потребностям 50-x годов ХХ столетия.

Всамом деле, машина EDVAC характеризовалась следующими параметрами:

количество двоичных разрядов для представления чисел 32;

тактовая частота 1 МГц;

емкость оперативной памяти 21 в бит = 32 K байт.

Несмотря на последовательный характер работы , ВМ EDVAC не уступала по производительности ENIAC. Напри] ер, быстродействия ENIAC и

EDVAC при выполнении операций умножени q оценивались соответственно величинами: 357 опер./c (над 10-разрядными десятичными числами) и 1000 опер./c (над 32-разрядными двоичными числами).

Таким образом, электронные вычислительные машины ENIAC и

EDVAC отражают дуализм в развитии циф ровых средств информатики, говоря иначе, констатируют неизбежности двух начал: параллельных и последовательных архитектур.

1.3.4. Вычислительные машины M:ADAM и JOHNIAC

Первые три ЭВМ: M-Mark 1, EDSAC и EDVAC, безусловно, свидетельствовали o крупных достижениях электронной вычислительной техники.

36

1.4. Путь развития отечественной электронной вычислительной техники

Они стали прототипами для последующих разработок и показали технико-

экономическую эффективность ОЗУ на электронно-лучевых трубках и ли-

ни х задержки. Однако наибольшую популярность получили ОЗУ на трубках;

их использовали, пока не была внедрена память на ферритовьх кольцах.

Машина MADAM. Вычислительная машина MADAM (MAnchester

Digital Automatic Machine) является первой в мире коммерческой разработ-

кой, использовавшей память на электронно-лучевой трубке. Руководителем

проекта был A. Тьюринг, машина MADAM была построена в 1951 г. в Ве-

ликобритании.

Машина JOHNIAC. Вычислительная машина JOHNIAC была созда-

на в 1953 г. в Институте перспективных исследований США группой инженеров, возглавляемой дж. Бигелоу. Название машине было дано в честь дж. фон Неймана.

Во время работы над проектом EDVAC дж. фон Нейман обратил

внимание на перспективность применения памяти на электронно-лучевой трубке. Он предложил вариант такой памяти, использующий иконоскоп. (Иконоскоп телевизионная передающая трубка c накоплением электрического заряда на мозаичной светочувствительной мишени.) Предполагалось хранить информацию на внутренней поверхности электронно-лучевой трубки, что стало основой разработки новой ЭВМ.

дж. фон Нейман понимал, что машина c памятью на электроннолучевой трубке будет намного превосходить по быстpодействию все существовавшие тогда ЭВМ в основном по двум причинам. Во-первых, применение электростатической памяти обеспечивало непосредственный доступ к каждому разряду слова (тогда как в линии задержки разряд или все слово становились доступными лишь после прохождения их до конца этой линии). Во-вторых, стало возможным обрабатывать все разряды слова параллельно.

Машина JOHNIAC сыграла важную роль при создании в США термо-

ядерной (водородной) авиационной бомбы. Бомба была испытана в США в

1954 г. (Термоядерная бомба впервые была испытана в СССР 12 августа 1953 г.)

1.4. Путь развития отечественной электронной вычислительной техники

Рассмотрим подробно отечественные электронные средства обработки информации. Путь развития электронных вычислительных средств в СССР

был весьма тернист: он сопровождался нeвocпpиятиeм кибернетики в 1950-x

годах, a тaкжe работ по параллельным вычислениям и по параллельным cиc-

тeмaм обработки информации в 1960-x годах. Тем не менее в Советском

37

1. Предыстория вычислительной техники

Союзе были и крупные достижения: построе:аы ЭВМ и вычислительные комплексы, не уступавшие зарубежным аналог ам, созданы научные школы и вычислительная индустрия.

1.4.1. Малая электронная счетная машина

Первая ЭВМ в СССР и в континентальной Европе [2-4] МЭСМ (Малая Электронная Счетная Машина) была сконструирована в Лаборатории моделирования и вычислительной техники Ин;,титута электротехники Академии наук УССР (г. Киев). Работы по созданы ю МЭСМ были выполнены в 1948-1951 гг. и проводились под руководством основоположника отечественной электронной вычислительной техники C.A. Лебедева (1902-1974; академик АН СССР c 1953 г.; академик АН У ССР c 1945 г.). Быстродействие МЭСМ составляло 50 опер./c; емкость оперативной памяти 94 слова

(63 для программы и 31 для чисел, двои чных 17-разрядных); количе-

ство электронных ламп 6000; потребляемая мощность 25 кВт, занимаемaя площадь б0 м 2.

Основные архитектурные принципы пост оения ЭВМ были разработаны C.A. Лебедевым (независимо от работ дж. фон Н еймана) в 1947 г. [3, c. 264] :

—в состав ЭВМ должны входить арифмЕ -тическое устройство, память, устройство управления и устройство ввода-выгода;

—программа в машинных кодах должна храниться в той же памяти, что и числа;

—для представления чисел и команд должна применяться двоичная система счисления;

—вычисления должны выполняться автоматически в соответствии c программой, хранящейся в памяти;

—логические операции должны выполи гяться наряду c арифметическими операциями;

—память машины должна быть организована по иерархическому

принципу.

Функциональная структура МЭСМ стала прототипом для последующих отечественных универсальных ЭВМ. B состав МЭСМ входили устройство управления (УУ), арифметическое устройство (АУ), запоминающее устройство (ЗУ), входное устройство и вывс дное устройство (для печати результатов). Остановимся на особенностях аа хитектуры МЭСМ.

МЭСМ была универсальной трехадресн эй синхронной ЭВМ. Машина имела всего 13 команд, которые позволяли реализовать, в частности, следyющие арифметические и логические операц ии:

сложение, вычитание, умножение и деление;

сдвиг числа на заданное количество разрядов;

38

1.4.Путь развития отечественной электронной вычислительной техники

сравнения двух чисел c учетом их знаков по их абсолютным величинам;

сложение команд;

передачу управления (из блока центрального управления в местное и

обратно);

останов машины.

Команды и числа представлялись словами из 17 двоичных разрядов.

Форма представления чисел c фиксированной запятой, один из 17 разрядов использовался для знака.

Команды условных переходов, изменение масштабов чисел, контроль

исправности устройств в МЭСМ реализовывались программно. При пере-

., ., полнении разрядной сетки осуществлялся автоматический останов машины.

Преобразование двоичныx кодов в десятичные было реализовано схемно. Устройство управления МЭСМ было представлено совокупностью

блоков, среди которых, в частности:

• блок центрального управления (ЦУ), осуществлявший управление всеми операциями в машине и инициирование, a также завершение работы необходимых схем;

блок управления командами, служивший для рассылки управляющих импульсов;

блок управления операциями, определявший последовательность выполнения элементарных действий в арифметическом устройстве в соответствии c работой ЦУ;

блок местного управления командами, обеспечивавший, в частности, работу магнитного запоминающего устройства.

Арифметическое устройство предназначалось для выполнения всех элементарных арифметических и логических операций. Оно включало накапливающий сумматор и два регистра на триггерах. B сyмматоре была реализована цепочка сквозных переносов..

Запоминающее устройство включало оперативное ЗУ и внешнее ЗУ. Оперативная память состояла из электронных запоминающих устройств для чисел (ЭЗЧ) и для команд (ЭЗК). Емкость ЭЗЧ была рассчитана на 31 число, a ЭЗК на 63 команды. Оперативная память была построена из ламповых

тpиггеров и содержала 2500 триодов и 1500 диодов. Кроме того, имелось долговременное штекерное запоминающее устройство, которое позволяло

вводить и хранить 31 число и 63 команды.

Внешнее ЗУ магнитный барабан емкостью 5 тыс. слов. Была преду - смотрена возможность подключения ЗУ на магнитной ленте (трехдорожечного магнитофона), которое могло использоваться для хранения и ввода подпрогpамм.

Тактовая частота МЭСМ составляла 5 кГц. Полное время одного т икла, вктпочавшего выборку двух чисел из ОЗУ, производство операции над ними,

39

1. Предыстория вычислительн техники

передачу результатов в память и прием следующ ой команды, занимало 17,6 мс для всех операций, кроме деления, которое состар ляло от 17,6 до 20,8 мс.

Технические характеристики МЭСМ:

система счисления двоичная c фиксированной запятой;

количество разрядов 17 (из них один знаковый);

• вид запоминающего устройства

на триггерных ячейках (преду-

смотрена возможность использования магнитного барабана);

 

• емкость запоминающего устройства

'а4 слова (31

для чисел и

63 для команд);

 

 

 

• емкость штекерного устройства 94 слова (31

для чисел и 63

для команд);

 

 

 

проводимые операции: сложение, вычитание, умножение, деление, сдвиг, сравнение c учетом знака, сравнение по абсолют Кой величине, передача управ-

ления, передача чисел c магнитного барабана, сложение команд, останов;

система команд тpехадресная;

• арифметическое устройство

универсальное, параллельного дейст-

вия, на триггерных ячейках;

 

скорость работы около 3000 опер. /мим ;

система ввода чисел последовательная;

• ввод исходных данных c перфораци энных карт или посредством набора кодов на штекерном коммутаторе;

вывод результатов фотографированиЕ: или посредством электромеханического печатающего устройства;

контроль программный;

• определение неисправностей

специальными тестами и переводом

на ручную или полуавтоматическую работу;

• количество электронных ламп: триодов около 3500, диодов 2500;

 

•потребляемаямощность25кВт;

• площадь помещения 60 м 2

[3, c. 76 или 4, c. 349].

Машина МЭСМ явилась предвестницей ряда (семейства) быстродействующих ЭВМ, известных как БЭСМ. B процессе создания МЭСМ разрабатывaлись, монтировались и опробовaлись быстродействующие устройства

иузлы для БЭСМ.

1.4.2.Быстродействующие электронные счетные машины

БЭСМ-1 и БЭСМ.-2

Главным конструктором машин семейства БЭСМ был академик C.A. Лебедев (БЭСМ Быстродействующая Электронная Счетная Машина).

40

1.4. Путь развития отечественной электронной вычислительной техники

Машина БЭСМ АН СССР (БЭСМ-1). Электронная вычислительная машина общего назначения БЭСМ АН СССР (или БЭСМ-1), разработанная в Инcтитyте точной механики и вы ислительной теxники (ИТМиВТ) АН СССР

(г. Москва), была самой быстродействующей машиной в Европе [3, 4]. Машина c оперативной памятью на ртутных линиях задержки (емкостью 1024 39 -раз- рядныx слов) была принята Государственной комиссией в апреле 1953 г.; c памятью на потенциалоскопах (запоминающих электронно-лучевых приборах, 1024 слова) в начале 1955 г.; a c памятью на ферритовьх сердечниках (2047 слов) в 1957 г. Быстpодействие БЭСМ-1 составляло 10 тыс. опер./c; среднее время полезной работы 72 % общего времени функционирования ЭВМ; количество электронных ламп 5000; потребляемая мощность ЭВМ (без системы охлаждения) 30 кВт; занимаемая площадь 100 м2.

Архитектурные особенности машины. Система команд трехадресная; число разрядов для кодов команд 39; код операции 6 разрядов; коды адресов 3 адреса по 11 разрядов каждый. B систему операций машины входили: арифметические и логические операции, операции передач кодов и управления. Операции проводились c нормализованными и c ненормализованными числами.

Важной особенностью БЭСМ-1 стала реализация операций над числами c плавающей запятой, обеспечившая большой диапазон используемых чисел (от 10-9 до 1010). На БЭСМ-1 достигалась высокая точность вычислений (около 10 десятичных знаков).

Система представления чисел двоичная c плавающей запятой, число разрядов для кодов чисел 39 (цифровая часть числа 32 разряда; знак

числа 1 разряд; порядок числа 5 разрядов; знак порядка 1).

БЭСМ-1 была машиной параллельного действия: операции выполнялись одновременно над всеми двоичными разрядами чисел. Зарубежные

ЭВМ того времени реaлизовывaли последовательную или параллельнопоследовательную системы обработки информации.

Кроме оперативной памяти в ней имелось долговременное запоминающее устройство (ДЗУ) на полупроводниковых диодах (емкостью до 1024 чисел), в котором постоянно хранились некоторые наиболее часто встречающиеся константы и подпрограммы. Содержимое ДЗУ не изменялось во время работы машины. Кроме того, ЭВМ имела внешний накопитель на магнитных лентах (НМЛ) четыре блока по 30 тыс. чисел в каждом, a также промежуточный накопитель на магнитном барабане (НМБ) емкостью 5120 чисел (со скоростью выборки до 800 чисел в секунду).

Ввод информации в машину осуществлялся со считывающего устройства на перфоленте (1200 чисел в минуту), a вывод результатов на элек-

тpомеханическое печатающее устройство (1200 чисел в минуту) и фотопе-

чатающее устройство (200 чисел в секунду).

41

1. Предыстория вычислительной техники

Конструкция. ЭВМ БЭСМ-1 была собра: iа в одной основной стойке. B отдельной стойке размещалось ДЗУ и шкаф питания. Пульт управления служил для пуска и останова машины, отладк программ, a также для контроля за ее работой.

Элементоо-конструкторская база. Она была представлена двух- и четырехламповыми блоками (ячейками), в которых были смонтированы тpиггеры, вентили, усилители и другие схемы, и соединительными платами без активных элементов. Один триггер (вместе c входами на диодах) занимал один четырехламповый блок. Вентили н усилители были двухламповыми. Усилители и некоторые вентили были выполнены на пентодах. B БЭСМ-1 было около 5 тыс. электронных ламп.

Программное обеспечение. Системное обеспечение в ЭВМ отсутствовало. Для машины БЭСМ-1 были разработаны сис -тема контрольных шестов, позволявшая быстро находить неисправности в ма: и ине, a также система профилактическиx испытаний для обнаружения мест возможны неисправностей.

Машина БЭСМ-2. Электронная машина. БЭСМ-2 являлась серийным промышленным аналогом уникальной БЭСМ- l . ЭВМ разработана (1957) и внедрена (1958) в народное хозяйство коллекх ивами ИТМиВТ АН СССР и завода им. Володарского (г. Ульяновск).

Основные технические характеристики БЭСМ-2 аналогичны характеристикам БЭСМ-1.

Системы команд машин отличались друг от друга лишь тем, что в БЭСМ-2 были исключены редко использовави:иеся команды (например, передача модуля числа) и добавлены некоторые iовые команды.

Принципиальные особенности:

оперативное запоминающее устройство было реализовано на ферритовых сердечниках. Емкость ОЗУ составляла 2048 39-разрядных чисел; время выборки 10 мкс;

внешние запоминающие устройства бы, ли выполнены на магнитных

барабанах и сменных магнитных лентах. Емко ль запоминающего устройства на одном барабане составляла не менее 5120 слов; скорость считывания

или записи 880 слов в секунду; частота импульсов

около 35 кГц; мак-

симaльное время ожидания первого числа

з0 мкс, среднее время ожида-

ния 40 мкс;

 

 

• количество устройств на магнитной ленте четыре. Запись на ленту проводилась группами слов. Максимальное число слов в одной грyппе

2047. Емкость каждой ленты составляла не ме: фее 40 000 слов; скорость считывания или записи 400 слов в секунду; час гота следования импульсов около 16 кГц;

• массовое применение полупроводников iх диодов. Количество полупроводниковых диодов 5 тыс., электроннь, х ламп 4 тыс. Количество ферритовых сердечников 200 тыс.;

42

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]