- •Раздел 1. Высказывания и операции над ними. Формулы алгебры высказываний. Классификация формул
- •1.1. Высказывания и операции над высказываниями
- •1.2. Формулы алгебры высказываний
- •1.3.Классификация формул
- •1.4. Значение тавтологий
- •1.5.Основные правила получения тавтологий
- •Раздел 2. Логическая равносильность формул
- •2.1. Отношение равносильности
- •2.2 Законы логики
- •2.3. Упрощение формул.
- •2.4. Равносильные преобразования. Упрощение формул
- •Раздел 3. Нормальные формы для формул алгебры высказываний
- •3.1 Нормальные формы
- •3.2 Совершенные нормальные формы
- •3.4 Получение скнф и сднф с помощью таблиц истинности
- •Раздел 4. Логическое следование
- •4.1 Логическое следование
- •Раздел 5. Применение алгебры высказываний в логико - математической практике
- •5.1 Получение следствий из данных посылок.
- •5.2. Получение следствий, содержащих заданные переменные.
- •5.3. Решение логических задач методом рассуждений.
- •5.4.Методы решение логических задач
- •Раздел 6. Исчисление высказываний.
- •6.1. Понятие переключательной схемы.
- •Раздел 7. Логика предикатов.
- •7.1. Понятие предиката
- •7.2. Способа задания предиката
- •7.3. Множество истинности предикатов
- •7.4. Язык логики предикатов
- •7.5. Следование и включение
- •7.6. Понятие отношений. Свойства отношений.
- •Раздел 8. Исчисление предикатов
- •8.1.Кванторы общности и существования
- •8.2. Квантификация многоместной высказывательной формы.
- •8.3. Отрицание предложений кванторами.
- •8.4. Численные кванторы
- •8.5. Символическая запись определений и теорем.
- •Раздел 9. Алгоритмы. Свойства алгоритмов.
- •9.1 Интуитивное понятие алгоритма.
- •9.2 Свойства алгоритмов
- •Раздел 10. Основная формализация (Машина Поста и мнр).
- •10.1 Машина Поста
- •10.2 Уточнение понятия алгоритма
- •Раздел 11. Основные формализации (мт и на)
- •11.1 Машина Тьюринга (мт)
- •11.2 Нормальные алгоритмы Маркова
- •11.3 Механизм работы нам:
Раздел 7. Логика предикатов.
7.1. Понятие предиката
Понятие ``предикат'' обобщает понятие ``высказывание''. Неформально говоря, предикат – это высказывание, в которое можно подставлять аргументы. Если аргумент один – то предикат выражает свойство аргумента, если больше – то отношение между аргументами.
Пример предикатов. Возьмём высказывания: ``Сократ - человек'', ``Платон - человек''. Оба эти высказывания выражают свойство ``быть человеком''. Таким образом, мы можем рассматривать предикат ``быть человеком'' и говорить, что он выполняется для Сократа и Платона.
Возьмём высказывание: ``расстояние от Иркутска до Москвы 5 тысяч километров''. Вместо него мы можем записать предикат ``расстояние'' (означающий, что первый и второй аргумент этого предиката находятся на расстоянии, равном третьему аргументу) для аргументов ``Иркутск'', ``Москва'' и ``5 тысяч километров''.
Пример рассуждения, не выразимого в логике высказываний. Все люди смертны. Сократ - человек. Следовательно, Сократ смертен.
Это рассуждение на языке логики высказываний можно записать тремя отдельными высказываниями. Однако никакой связи между ними установить не удастся. На языке логики предикатов эти предложения можно выразить с помощью двух предикатов: ``быть человеком'' и ``быть смертным''. Первое предложение устанавливает связь между этими предикатами.
7.2. Способа задания предиката
1) Высказывательной формой, т. е. следует задать высказывательную форму и множество объектов для переменных
(x) = <x - нечетное>, Mx = N
2) Табличный
Табличный способ применяется тогда, когда мало переменных (от 1 до 3), от которых зависит предикат и множество объектов, на котором задан данный предикат невелико.
N-местная высказывательная форма - высказывательная форма, зависящая от N переменных.
(x) = <x > 1>, Mx = R - одноместная высказывательная форма
(x, y, z) = x + y - z = 10, Mx = My = Mz = R - трехместная высказывательная форма
Если поменять порядок следования переменных в предикате, то это будет другой предикат. Если порядок следования не задан, то берётся по алфавиту, а потом по индексам (возрастание).
Если при каком-то значении переменной высказывательная форма, не имеющая знаков логических операций, теряет смысл, то её принято считать ложной.
(x) = - истина при x < 0
(x) = - ложь при x < 0
Упорядоченная n-ка - совокупность n не обязательно различных объектов вместе с заданным порядком их расположения.
{а; п; е; л; ь; с; и; н} = {с; п; а; н; и; е; л; ь} - для множества
(а; п; е; л; ь; с; и; н) ≠ (с; п; а; н; и; е; л; ь) - для упорядоченной n-ки
Декартово произведение (произведение n множеств) - такое множество упорядоченных n-ок, в которых на 1-ом месте объект из 1-ого множества, на 2-ом из 2-ого:
Пусть Mx = {a; b; c}, My = {1; 2}, тогда их декартово произведение равно:
Mx * My = {(a; 1); (b; 2); (a; 2); (c; 1); (c; 2); (b; 1)}
7.3. Множество истинности предикатов
(<пэ с крышкой>) - множество истинности предикатов, множество тех значений x, при которых предикат принимает значение <истина>.
Если предикат зависит от двух переменных, то множеством истинности будет множество пар, в которых на 1-ом месте объект из Mx, на втором - из My.
Если (x, y) = <x > y>, Mx = {1; 2; 3), то = {(3; 1); (3; 2); (2; 1)}
Если множество совпадает с множеством, на котором задан данный предикат, то предикат называется тождественно истинным.
Если множество пустое, то предикат называется тождественно ложным.
Равносильность высказывательных форм
Высказывательная форма равносильна высказывательной форме , если переменные принимают значение из одного и того же множества и при любом наборе переменных высказывательные формы принимают одинаковые значения истинности.
Равносильные:
x + 1 = 0 <=> x = cos π
|x| > 3 <=> x2 - 90 > 0
|x| < 0 <=> sin x = 2
x = 1 <=> x + y - y = 1
Неравносильные:
x > 0 <≠> y > 0
x = x <≠> = x