Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

підручники. біохімія / Березов_Коровкин - Биологическая химия

.pdf
Скачиваний:
18
Добавлен:
25.02.2016
Размер:
39.21 Mб
Скачать

ном поступлении их в кровяное русло. Она в свою очередь может быть почечной и внепочечной.

При почечной ретенционной азотемии концентрация остаточного азота в крови увеличивается вследствие ослабления очистительной (экскреторной) функции почек. Резкое повышение содержания остаточного азота происходит в основном за счет мочевины. В этих случаях на долю азота мочевины приходится 90% небелкового азота крови вместо 50% в норме. Внепочечная ретенционная азотемия может возникнуть в результате тяжелой недостаточности кровообращения, снижения артериального давления и уменьшения почечного кровотока. Нередко внепочечная ретенционная азотемия является результатом наличия препятствия оттоку мочи после ее образования в почке.

П р о д у к ц и о н н а я азотемия развивается при избыточном поступлении азотсодержащих продуктов в кровь, как следствие усиленного распада тканевых белков при обширных воспалениях, ранениях, ожогах, кахексии и др. Нередко наблюдаются азотемии смешанного типа.

Как отмечалось, в количественном отношении главным конечным продуктом обмена белков в организме является мочевина. Принято считать, что мочевина в 18 раз менее токсична, чем остальные азотистые вещества. При острой почечной недостаточности концентрация мочевины в крови достигает 50–83 ммоль/л (норма 3,3–6,6 ммоль/л). Нарастание содержания мочевины в крови до 16–20 ммоль/л (в расчете на азот мочевины) *

является признаком

нарушения функции почек

средней

тяжести, до

35 ммоль/л–тяжелым

и свыше 50 ммоль/л–очень

тяжелым

нарушением

с неблагоприятным прогнозом. Иногда определяют отношение азота мочевины крови к остаточному азоту крови (в процентах):

Азот мочевины Остаточный азот х100.

В норме это соотношение меньше 48%. При почечной недостаточности оно повышается и может достигать 90%, а при нарушении мочевинообразовательной функции печени снижается (ниже 45%).

К важным небелковым азотистым веществам крови относится также мочевая кислота. Напомним, что у человека мочевая кислота является конечным продуктом обмена пуриновых оснований. В норме концентрация мочевой кислоты в цельной крови составляет 0,18–0,24 ммоль/л (в сыворотке крови–около 0,29 ммоль/л). Повышение содержания мочевой кислоты в крови (гиперурикемия)–главный симптом подагры. При подагре уровень мочевой кислоты в сыворотке крови возрастает до 0,5–0,9 ммоль/л

идаже до 1,1 ммоль/л.

Всостав остаточного азота входит также азот аминокислот и полипептидов. В крови постоянно содержится некоторое количество свободных

аминокислот. Часть из них экзогенного происхождения, т.е. попадает в кровь из пищеварительного тракта, другая часть аминокислот образуется в результате распада белков ткани. Почти пятую часть содержащихся в плазме аминокислот составляют глутаминовая кислота и глутамин (табл. 17.2). Содержание свободных аминокислот в сыворотке и плазме крови практически одинаково, но отличается от уровня их в эритроцитах.

Внорме отношение концентрации азота аминокислот в эритроцитах к со-

*Содержание азота мочевины (2 атома с мол. массой 14) в 2,14 раза меньше, чем самой мочевины (мол. масса 60).

581

Таблица 17.2. Концентрация свободных аминокислот в плазме крови человека

Аминокислота

Концентрация,

Аминокислота

Концентрация,

мкмоль/л

мкмоль/л

 

 

 

 

 

 

Аланин

360–630

Лизин

144–363

Аргинин

92–172

Метионин

20–34

Аспарагин

50–150

Орнитин

30–100

Аспарагиновая кислота

2–30

Пролин

50–200

Валин

188–274

Серин

70–150

Глутаминовая кислота

54–175

Треонин

160–176

Глутамин

514–568

Триптофан

30–90

Глицин

100–400

Тирозин

78–83

Гистидин

110–135

Фенилаланин

85–115

Изолейцин

122–153

Цитруллин

10–50

Лейцин

130–252

Цистин

84–125

 

 

 

 

держанию азота аминокислот в плазме колеблется от 1,52 до 1,82. Это отношение отличается большим постоянством, и только при некоторых заболеваниях наблюдается его отклонение от нормы.

Суммарное определение уровня пептидов в крови производят сравнительно редко. Следует помнить, что многие пептиды крови являются биологически активными соединениями и их определение представляет большой клинический интерес. К таким соединениям относятся кинины (см. главу 8).

Безазотистые органические компоненты крови

В группу безазотистых органических веществ крови входят углеводы, жиры, липиды, органические кислоты и некоторые другие вещества. Все эти соединения являются либо продуктами промежуточного обмена углеводов и жиров, либо играют роль питательных веществ. Основные данные, характеризующие содержание в крови различных безазотистых органических веществ, представлены в табл. 17.1. В клинике большое значение придают количественному определению этих компонентов крови.

Электролитный состав плазмы крови

Известно, что общее содержание воды в организме человека составляет 60–65% от массы тела, т.е. приблизительно 40–45 л (если масса тела 70 кг); 2/3 общего количества воды приходится на внутриклеточную жидкость, 1/3 – нa внеклеточную. Часть внеклеточной воды находится в сосудистом русле (5% от массы тела), большая часть–вне сосудистого русла–это межуточная (интерстициальная), или тканевая, жидкость (15% от массы тела). Кроме того, различают «свободную воду», составляющую основу внутри- и внеклеточной жидкости, и воду, связанную с различными соединениями («связанная вода»).

Распределение электролитов в жидких средах организма очень специфично по своему количественному и качественному составу.

Из катионов плазмы натрий занимает ведущее место и составляет 93% от всего их количества. Среди анионов следует выделить прежде всего хлор и бикарбонат. Сумма анионов и катионов практически одинакова, т.е. вся система электронейтральна.

582

Натрий. Это основной осмотически активный ион внеклеточного пространства. В плазме крови концентрация ионов Na+ приблизительно в 8 раз выше (132–150 ммоль/л), чем в эритроцитах.

При гипернатриемии, как правило, развивается синдром, обусловленный гипергидратацией организма. Накопление натрия в плазме крови наблюдается при особом заболевании почек, так называемом паренхиматозном нефрите, у больных с врожденной сердечной недостаточностью, при первичном и вторичном гиперальдостеронизме.

Гипонатриемия сопровождается дегидратацией организма. Коррекция натриевого обмена достигается введением растворов хлорида натрия с расчетом дефицита его во внеклеточном пространстве и клетке.

Калий. Концентрация ионов К+ в плазме колеблется от 3,8 до 5,4 ммоль/л; в эритроцитах его приблизительно в 20 раз больше. Уровень калия в клетках значительно выше, чем во внеклеточном пространстве, поэтому при заболеваниях, сопровождающихся усиленным клеточным распадом или гемолизом, содержание калия в сыворотке крови увеличивается.

Гиперкалиемия наблюдается при острой почечной недостаточности и гипофункции коркового вещества надпочечников. Недостаток альдостерона приводит к усилению выделения с мочой натрия и воды и задержке в организме калия.

При усиленной продукции альдостерона корковым веществом надпочечников возникает гипокалиемия, при этом увеличивается выделение калия с мочой, которое сочетается с задержкой натрия в тканях. Развивающаяся гипокалиемия вызывает тяжелые нарушения в работе сердца, о чем свидетельствуют данные ЭКГ. Понижение содержания калия в сыворотке отмечается иногда при введении больших доз гормонов коркового вещества надпочечников с лечебной целью.

Кальций. В эритроцитах обнаруживаются следы кальция, в то время как в плазме содержание его составляет 2,25–2,80 ммоль/л.

Различают несколько фракций кальция: ионизированный кальций, кальций неионизированный, но способный к диализу, и недиализирующийся (недиффундирующий), связанный с белками кальций.

Кальций принимает активное участие в процессах нервно-мышечной возбудимости (как антагонист ионов К+), мышечного сокращения, свертывания крови, образует структурную основу костного скелета, влияет на проницаемость клеточных мембран и т.д.

Отчетливое повышение уровня кальция в плазме крови наблюдается при развитии опухолей в костях, гиперплазии или аденоме паращитовидных желез. В таких случаях кальций поступает в плазму из костей, которые становятся ломкими.

Важное диагностическое значение имеет определение уровня кальция при гипокалъциемии. Состояние гипокальциемии наблюдается при гипопаратиреозе. Нарушение функции паращитовидных желез приводит к резкому снижению содержания ионизированного кальция в крови, что может сопровождаться судорожными приступами (тетания). Понижение концентрации кальция в плазме отмечают также при рахите, спру, обтурационной желтухе, нефрозах и гломерулонефритах.

Магний. В организме магний локализуется в основном внутри клетки – 15 ммоль/ на 1 кг массы тела; концентрация магния в плазме 0,8– 1,5 ммоль/л, в эритроцитах – 2,4–2,8 ммоль/л. Мышечная ткань содержит магния в 10 раз больше, чем плазма крови. Уровень магния в плазме даже при значительных его потерях длительное время может оставаться стабильным, пополняясь из мышечного депо.

583

Фосфор. В клинике при исследовании крови различают следующие фракции фосфора: общий фосфат, кислоторастворимый фосфат, липоидный фосфат и неорганический фосфат. Для клинических целей чаще определяют содержание неорганического фосфата в плазме (сыворотке) крови.

Уровень неорганического фосфата в плазме крови повышается при гипопаратиреозе, гипервитаминозе D, приеме тироксина, УФ-облучении организма, желтой дистрофии печени, миеломе, лейкозах и т.д.

Гипофосфатемия (снижение содержания фосфора в плазме) особенно характерна для рахита. Очень важно, что снижение уровня неорганического фосфата в плазме крови отмечается на ранних стадиях развития рахита, когда клинические симптомы недостаточно выражены. Гипофосфатемия наблюдается также при введении инсулина, гиперпаратиреозе, остеомаляции, спру и некоторых других заболеваниях.

Железо. В цельной крови железо содержится в основном в эритроцитах (около 18,5 ммоль/л), в плазме концентрация его составляет в среднем 0,02 ммоль/л. Ежедневно в процессе распада гемоглобина эритроцитов в селезенке и печени освобождается около 25 мг железа и столько же потребляется при синтезе гемоглобина в клетках кроветворных тканей. В костном мозге (основная эритропоэтическая ткань человека) имеется лабильный запас железа, превышающий в 5 раз суточную потребность в железе. Значительно больше запас железа в печени и селезенке (около 1000 мг, т.е. 40-суточный запас). Повышение содержания железа в плазме крови наблюдается при ослаблении синтеза гемоглобина или усиленном распаде эритроцитов.

При анемии различного происхождения потребность в железе и всасывание его в кишечнике резко возрастают. Известно, что в двенадцатиперстной кишке железо всасывается в форме двухвалентного железа. В клетках слизистой оболочки кишечника железо соединяется с белком апоферритином и образуется ферритин. Предполагают, что количество поступающего из кишечника в кровь железа зависит от содержания апоферритина в стенках кишечника. Дальнейший транспорт железа из кишечника в кроветворные органы осуществляется в форме комплекса с белком плазмы крови трансферрином. Железо в этом комплексе трехвалентное. В костном мозге, печени и селезенке железо депонируется в форме ферритина–своеобразного резерва легкомобилизуемого железа. Кроме того, избыток железа может откладываться в тканях в виде хорошо известного морфологам метаболически инертного гемосидерина.

Недостаток железа в организме может вызвать нарушение последнего этапа синтеза гема – превращение протопорфирина IX в гем. Как результат этого развивается анемия, сопровождающаяся увеличением содержания порфиринов, в частности протопорфирина IX, в эритроцитах.

Микроэлементы. Обнаруживаемые в тканях, в том числе в крови, в очень небольших количествах (10–6–10–12%) минеральные вещества получили название микроэлементов. К ним относят йод, медь, цинк, кобальт, селен и др. Большинство микроэлементов в крови находится в связанном с белками состоянии. Так, медь плазмы входит в состав церрулоплазмина, цинк эритроцитов целиком связан с карбоангидразой (карбонат-дегидратаза), 65–70% йода крови находится в органически связанной форме–в виде тироксина. В крови тироксин содержится главным образом в связанной с белками форме. Он составляет комплекс преимущественно со специфическим связывающим его глобулином, который располагается при электрофорезе сывороточных белков между двумя фракциями α-глобулина. Поэтому тироксинсвязывающий белок носит название интеральфаглобулина.

584

Кобальт, обнаруживаемый в крови, также находится в белково-связанной форме и лишь частично как структурный компонент витамина В12. Значительная часть селена в крови входит в состав активного центра фермента глутатионпероксидазы, а также связана с другими белками.

Клетки крови

У человека в 1 мкл крови содержится 5•106 эритроцитов (красные кровяные клетки), которые образуются в костном мозге. Зрелые эритроциты человека и других млекопитающих лишены ядра и почти целиком заполнены гемоглобином. Средняя продолжительность жизни этих клеток 125 дней. Разрушаются эритроциты в селезенке и печени. Концентрация гемоглобина в крови зависит от общего количества эритроцитов и содержания в каждом из них гемоглобина. Поэтому выделяют гипо-, нормо- и гиперхромную анемию в зависимости от того, сопряжено ли падение уровня гемоглобина крови с уменьшением или увеличением его содержания в одном эритроците.

Большую часть гемоглобина взрослого человека составляет HbA1 (96– 98% от общего содержания гемоглобина), в небольшом количестве присутствуют НbА2 (2–3%), а также HbF (менее 1%), которого много в крови новорожденных. У некоторых людей в крови обнаруживаются генетически обусловленные аномальные гемоглобины (см. главу 2), всего описано более 100 типов таких гемоглобинов. Появление в крови аномальных типов гемоглобина нередко приводит к возникновению характерных анемий, которые получили название «гемоглобинопатии», или «гемоглобинозы». Следует заметить, что в эритроцитах интенсивно протекают гликолиз и пентозофосфатный путь.

Содержание лейкоцитов в 1 мкл крови составляет около 7•103, т.е. почти в 1000 раз меньше, чем эритроцитов. Лейкоциты в отличие от эритроцитов являются полноценными клетками с большим ядром и митохондриями и высоким содержанием нуклеиновых кислот. В них сосредоточен весь гликоген крови, который служит источником энергии при недостатке кислорода, например, в очагах воспаления.

Лейкоциты представлены клетками 3 типов: лимфоцитами (26% от общего числа лейкоцитов), моноцитами (7%) и полиморфно-ядерными лейкоцитами, или гранулоцитами (70%). При окрашивании различными красителями выявляются 3 типа гранулоцитов: нейтрофилы, эозинофилы и базофилы.

Лимфоциты продуцируются в лимфатической ткани, основная их функция–образование антител, в частности иммуноглобулинов. Моноциты вдвое крупнее лимфоцитов; они способны переваривать клетки бактерий. Гранулоциты образуются в красном костном мозге и выполняют различные функции: например, основная функция нейтрофилов–фаго- цитоз.

Наконец, в крови имеются кровяные пластинки, или тромбоциты, которые образуются из цитоплазмы мегакариоцитов костного мозга. Тромбоциты не могут считаться полноценными клетками, поскольку не содержат ядра, однако в них протекают все основные биохимические процессы: синтезируется белок, происходит обмен углеводов и липидов, осуществляется биологическое окисление, сопряженное с фосфорилированием, и т.д. Основная физиологическая функция кровяных пластинок–участие в процессе свертывания крови.

585

БУФЕРНЫЕ СИСТЕМЫ КРОВИ И КИСЛОТНО-ОСНОВНОЕ РАВНОВЕСИЕ

Постоянство рН внутренней среды организма обусловлено совместным действием буферных систем и ряда физиологических механизмов. К последним относятся дыхательная деятельность легких и выделительная функция почек.

Кислотно-основное равновесие–относительное постоянство реакции внутренней среды организма, количественно характеризующееся или концентрацией водородных ионов (протонов), выраженной в молях на 1 л, или водородным показателем–отрицательным десятичным логарифмом этой концентрации–рН (power hydrogen–сила водорода).

«Первая линия защиты» живых организмов, препятствующая изменениям рН их внутренней среды, обеспечивается буферными системами крови.

Буферная система * представляет собой сопряженную кислотно-основ- ную пару, состоящую из акцептора и донора водородных ионов (протонов).

Поведение буферных растворов описывается уравнением Гендерсона– Хассельбаха, которое связывает значение рН с константой кислотности (Ка):

рН рКа + Ig

[акцепторпротонов]

[донор протонов]

Уравнение Гендерсона–Хассельбаха позволяет вычислить величину рКа любой кислоты при данном рН (если известно отношение молярных концентраций донора и акцептора протонов), определить величину рН сопряженной кислотно-основной пары при данном молярном соотношении донора и акцептора протонов (если известна величина рКа) и рассчитать соотношение между молярными концентрациями донора и акцептора протонов при любом значении рН (если известна величина рКа слабой кислоты).

Буферные системы крови

Установлено, что состоянию нормы соответствует определенный диапазон колебаний рН крови–от 7,37 до 7,44 со средней величиной 7,40 **. Кровь представляет собой взвесь клеток в жидкой среде, поэтому ее кислотноосновное равновесие поддерживается совместным участием буферных систем плазмы и клеток крови. Важнейшими буферными системами крови являются бикарбонатная, фосфатная, белковая и наиболее мощная гемоглобиновая.

Бикарбонатная буферная система–мощная и, пожалуй, самая управляемая система внеклеточной жидкости и крови. На долю бикарбонатного буфера приходится около 10% всей буферной емкости крови. Бикарбонат-

* Буферными свойствами, т.е. способностью противодействовать изменению рН при внесении в систему кислот или оснований, обладают смеси, состоящие из слабой кислоты и ее соли с сильным основанием или слабого основания с солью сильной кислоты.

** В других биологических жидкостях и в клетках рН может отличаться от рН крови. Например, в эритроцитах рН составляет 7,19 ± 0,02, отличаясь от рН крови на 0,2.

586

ная система * представляет собой сопряженную кислотно-основную пару, состоящую из молекулы угольной кислоты Н2СО3, выполняющую роль донора протона, и бикарбонат-иона НСО3, выполняющего роль акцептора протона:

Донор Акцептор протона протона

Для данной буферной системы величину рН в растворе можно выразить через константу диссоциации угольной кислоты (рКН2СО3) и логарифм концентрации недиссоциированных молекул Н2СО3 и ионов HCO3:

Истинная концентрация недиссоциированных молекул Н2СО3 в крови

незначительна ** и находится в

прямой зависимости от

концентрации

растворенного углекислого газа

(СО2 + Н2О <=> Н2СО3).

Поэтому

удоб-

нее пользоваться тем вариантом

уравнения, в котором

рКH2СО3

заме-

нена «кажущейся» константой диссоциации Н2СО3, учитывающей общую

концентрацию растворенного СО2

в крови:

 

 

где K1 – «кажущаяся» константа диссоциации Н2СО3; [СО2(р)]–концентра-

ция растворенного СО2.

При нормальном значении рН крови (7,4) концентрация ионов бикарбо-

ната НСО3

в плазме крови превышает концентрацию СО2 примерно в

20 раз. Бикарбонатная буферная система функционирует как эффективный

регулятор в

области рН 7,4.

Механизм действия данной системы заключается в том, что при выделении в кровь относительно больших количеств кислых продуктов водородные ионы Н+ взаимодействуют с ионами бикарбоната НСО3, что приводит к образованию слабодиссоциирующей угольной кислоты Н2СО3. Последующее снижение концентрации Н2СО3 достигается в результате ускоренного выделения СО2 через легкие в результате их гипервентиляции (напомним, что концентрация Н2СО3 в плазме крови определяется давлением СО2 в альвеолярной газовой смеси).

Если в крови увеличивается количество оснований, то они, взаимодействуя со слабой угольной кислотой, образуют ионы бикарбоната и воду. При этом не происходит сколько-нибудь заметных сдвигов в величине рН. Кроме того, для сохранения нормального соотношения между компонентами буферной системы в этом случае подключаются физиологические механизмы регуляции кислотно-основного равновесия: происходит задерж-

*Бикарбонаты во внеклеточной жидкости находятся в виде натриевой соли NaHCO3

ивнутри клеток - калиевой соли КНСО3, имеющих общий анион НСО3.

**Молярная концентрация Н2СО3 по сравнению с концентрацией СО2 в плазме крови очень низкая. При РСО2 = 53,3 гПа (40 мм рт. ст.) на 1 молекулу Н2СО3 приходится примерно 500 молекул СО2.

587

ка в плазме крови некоторого количества СО2 в результате гиповентиляции легких *. Как будет показано далее, данная буферная система тесно связана с гемоглобиновой системой.

Фосфатная буферная система представляет собой сопряженную кислот- но-основную пару, состоящую из иона Н2РО4(донор протонов) и иона НРО42– (акцептор протонов):

Донор Акцептор протона протона

Роль кислоты в этой системе выполняет однозамещенный фосфат NaH2PO4, а роль соли двузамещенный фосфат–Na2HPO4.

Фосфатная буферная система составляет всего лишь 1% от буферной емкости крови. В других тканях эта система является одной из основных. Для фосфатной буферной системы справедливо следующее уравнение:

Во внеклеточной жидкости, в том числе в крови, соотношение [НРО42–]:

2РО4] составляет 4:1. Величина рКН2РО4– равна 6,86.

Буферное действие фосфатной системы основано на возможности связывания водородных ионов ионами НРО42– с образованием Н2РО4+ + + НРО42– —> Н2РО4), а также ионов ОНс ионами Н2РО4(ОН+

+ Н2РО4—> HPO42– + H2O). Буферная пара (Н2РО4–НРО42–) способна оказывать влияние при изменениях рН в интервале от 6,1 до 7,7 и может

обеспечивать определенную буферную емкость внутриклеточной жидкости, величина рН которой в пределах 6,9–7,4. В крови максимальная емкость фосфатного буфера проявляется вблизи значения рН 7,2. Фосфатный буфер в крови находится в тесном взаимодействии с бикарбонатной буферной системой. Органические фосфаты также обладают буферными свойствами, но мощность их слабее, чем неорганического фосфатного буфера.

Белковая буферная система имеет меньшее значение для поддержания КОР в плазме крови, чем другие буферные системы.

Белки образуют буферную систему благодаря наличию кислотно-основ- ных групп в молекуле белков: белок–Н+ (кислота, донор протонов) и белок (сопряженное основание, акцептор протонов). Белковая буферная система плазмы крови эффективна в области значений рН 7,2–7,4.

Гемоглобиновая буферная система–самая мощная буферная система крови. Она в 9 раз мощнее бикарбонатного буфера; на ее долю приходится 75% от всей буферной емкости крови.

Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и углекислого газа. Константа диссоциации кислотных групп гемоглобина меняется в зависимости от его насыщения кислородом. При насыщении кислородом гемоглобин становится более сильной кислотой (ННbО2). Гемоглобин, отдавая кислород, превращается в очень слабую органическую кислоту (ННb).

Итак, гемоглобиновая буферная система состоит из неионизированного гемоглобина ННb (слабая органическая кислота, донор протонов) и калие-

* Следует заметить, что хотя дыхательная система (легкие) значительно влияет на кислотно-основное равновесие (КОР), однако легким требуется около 1-3 мин, чтобы нивелировать сдвиги его в крови, тогда как буферным системам для этого нужно всего лишь 30 с.

588

вой соли гемоглобина КНb (сопряженное основание, акцептор протонов). Точно так же может быть рассмотрена оксигемоглобиновая буферная система. Система гемоглобина и система оксигемоглобина являются взаимопревращающимися системами и существуют как единое целое. Буферные свойства гемоглобина прежде всего обусловлены возможностью взаимодействия кисло реагирующих соединений с калиевой солью гемоглобина с образованием эквивалентного количества соответствующей калийной соли кислоты и свободного гемоглобина:

КНb+Н2СO3—>КНСO3+ ННb.

Именно таким образом превращение калийной соли гемоглобина эритроцитов в свободный ННb с образованием эквивалентного количества бикарбоната обеспечивает поддержание рН крови в пределах физиологически допустимых величин, несмотря на поступление в венозную кровь огромного количества углекислого газа и других кисло реагирующих продуктов обмена.

Гемоглобин (ННb), попадая в капилляры легких, превращается в оксигемоглобин (ННbО2), что приводит к некоторому подкислению крови, вытеснению части Н2СО3 из бикарбонатов и понижению щелочного резерва крови *. Перечисленные буферные системы крови играют важную роль в регуляции кислотно-основного равновесия. Как отмечалось, в этом процессе, помимо буферных систем крови, активное участие принимают также система дыхания и мочевыделительная система.

Нарушения кислотно-основного равновесия

Если компенсаторные механизмы организма не способны предотвратить сдвиги концентрации водородных ионов, то нарушается кислотно-основное равновесие. При этом наблюдаются два противоположных состояния–аци- доз и алкалоз.

При ацидозе концентрация водородных ионов в крови выше нормальных величин. Естественно, при этом рН уменьшается. Снижение величины рН ниже 6,8 вызывает смерть.

В тех случаях, когда концентрация водородных ионов в крови уменьшается (соответственно значение рН возрастает), наступает состояние алкалоза. Предел совместимости с жизнью–рН 8,0. В клинике практически такие величины рН, как 6,8 и 8,0, не встречаются.

В зависимости от механизмов развития нарушений КОР выделяют дыхательный и метаболический ацидоз (или алкалоз).

Дыхательный ацидоз возникает в результате уменьшения минутного объема дыхания (например, при бронхиальной астме, отеке, эмфиземе, ателектазе легких, асфиксии механического порядка и т.д.). Все эти заболевания ведут к гиповентиляции и гиперкапнии, т.е. повышению РCO2 артериальной крови. Как следствие увеличивается содержание Н2СО3 в плазме

* Щелочной резерв крови - способность крови связывать СО2 - исследуют теми же способами, что и общую концентрацию СО2, но в условиях уравновешивания плазмы крови при РСО2 = 53,3 гПа (40 мм рт. ст.): определяют общее количество СО2 и количество физически растворенного СО2 в исследуемой плазме. Вычитая из первой цифры вторую, получают величину, которая называется щелочным резервом крови. Она выражается в объемных процентах СО2 (объем СО2 в миллилитрах на 100 мл плазмы). В норме у человека эта величина составляет 50-60 об. % СО2.

589

крови. Увеличение РCO2 приводит также к повышению концентрации ионов НСО3в плазме за счет гемоглобинового буферного механизма.

У больных с гиповентиляцией легких может довольно быстро развиться состояние, характеризующееся низким значением рН плазмы, повышением концентраций Н2СО3 и НСО3. Это и есть дыхательный ацидоз. Одновременно со снижением рН крови повышается выведение с мочой свободных и связанных в форме аммонийных солей кислот.

Метаболический ацидоз–самая частая и тяжелая форма нарушений КОР. Он обусловлен накоплением в тканях и крови органических кислот. Этот вид ацидоза связан с нарушением обмена веществ. Метаболический ацидоз возможен при диабете, голодании, лихорадке, заболеваниях пищеварительного тракта, шоке (кардиогенном, травматическом, ожоговом и др.).

Особенно явно метаболический ацидоз проявляется у больных тяжелой формой диабета и не получающих инсулина. Увеличение кислотности обусловлено поступлением в кровь больших количеств кетоновых тел. В ответ на постоянную выработку кетоновых тел (β-оксимасляной и ацетоуксусной кислот) в организме компенсаторно снижается концентрация Н2СО3 –донора протонов в бикарбонатной буферной системе. Снижение концентрации Н2СО3 достигается в результате ускоренного выделения СО2 легкими (напомним, что Н2СО3 обратимо диссоциирует на СО2 и Н2О). Однако при тяжелом диабете для компенсации ацидоза легкие должны выделять настолько большие количества СО2, что концентрация Н2СО3 и НСО3становится крайне низкой и буферная емкость крови значительно уменьшается. Все это приводит к неблагоприятным для организма последствиям. При метаболическом ацидозе кислотность мочи и концентрация аммиака в моче увеличены.

Дыхательный алкалоз возникает при резко усиленной вентиляции легких, сопровождающейся быстрым выделением из организма СО2 и развитием гипокапнии (понижение РCO2 в артериальной крови).

Данный вид алкалоза может наблюдаться, например, при вдыхании чистого кислорода, компенсаторной одышке, сопровождающей ряд заболеваний, пребывании в разреженной атмосфере и при других состояниях.

Вследствие понижения содержания угольной кислоты в артериальной крови происходит сдвиг в бикарбонатной буферной системе: часть бикарбонатов превращается в угольную кислоту. Снижение концентрации НСО3 происходит при участии гемоглобинового буферного механизма. Однако этот механизм не может полностью компенсировать уменьшение концентрации Н2СО3 и гипервентиляция способна за несколько минут поднять внеклеточный рН до 7,65. При дыхательном алкалозе снижается щелочной резерв крови.

Метаболический алкалоз развивается при потере большого количества кислотных эквивалентов (например, неукротимая рвота и др.) и всасывании основных эквивалентов кишечного сока, которые не подвергались нейтрализации кислым желудочным соком, а также при накоплении основных эквивалентов в тканях (например, при тетании) и в случае неправильной коррекции метаболического ацидоза. При метаболическом алкалозе повышена концентрация НСО3в плазме, увеличен щелочной резерв крови. Компенсация метаболического алкалоза прежде всего осуществляется за счет снижения возбудимости дыхательного центра при повышении рН, что приводит к урежению частоты дыхания и возникновению компенсаторной гиперкапнии (табл. 17.3). Кислотность мочи и содержание аммиака в ней понижены.

590

Соседние файлы в папке підручники. біохімія