Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

підручники. біохімія / ¥à¥§®¢_Š®à®¢ª¨­ - ¨®«®£¨ç¥áª ï 娬¨ï

.pdf
Скачиваний:
8
Добавлен:
25.02.2016
Размер:
39.21 Mб
Скачать

 

 

рибоза

 

рибоза

 

Аденозин

Гуанозин

 

Н2O

Аденозин-

H3PO4

Нуклеозидфос-

 

 

 

 

 

 

NH3

дезаминаза

Рибозо

форилаза

 

 

 

 

 

 

 

 

 

рибоза

 

 

 

Инозин

Гуанин

 

H3PO4

Нуклеозидфос-

Н2О

Гуаниндез-

 

 

 

 

 

форилаза

NH3.

аминаза

Рибозо

 

 

 

 

Н2О

Н2О2

 

 

 

O2

 

 

 

 

Ксантиноксидаза

 

 

Гипоксантин

Ксантин

 

 

 

 

 

 

H2O + O2

Ксантин-

 

 

 

 

 

 

 

Н2O2

оксидаза

 

 

 

 

 

H2O

 

СО2 O2

 

 

Аллан-

 

Уриказа

 

 

тоиназа

 

 

 

Аллантоиновая

 

Аллантоин

Мочевая кислота

кислота

 

2O

 

 

 

 

Аллантоиказа

 

 

 

Глиоксиловая Мочевина кислота

Распад пиримидиновыхнуклеозидов

Последовательность ферментативных реакций гидролиза пиримидиновых нуклеозидов можно представить в виде схемы:

501

Н2O

NH3

 

 

 

 

Цитидиндезаминаза

 

 

 

 

Рибоза

 

 

Рибоза

 

Дезоксирибоза

Цитидин

 

Уридин

Тимидин

 

Н3РO4

 

Н2O

Н2O

Н3РO4

 

 

Уридиннук-

Уридиннук

Тимидинфос-

 

 

 

Уридинфосфорилаза

леозидаза

леозидаза

форилаза

 

 

 

 

2'-Дезок-

2'-Дезокси

 

Рибозо

 

Рибоза

рибозо-1

 

 

сирибоза

Урацил Тимин

Н+ + НАДФН

Дигидроурацилде-

НАДФН+ Н+

 

гидрогеназа

 

НАДФ+

 

НАДФ+

Дигидроурацил

Дигидротимин

Н2O

Дигидропиримидиназа

Н2O

N-карбамоилпропионовая

N-карбамоилизомасляная

кислота

кислота

H2O

 

Н2O

 

 

NH3

NH3

СO2

СO2

 

 

Мочевина

 

β-Аланин

β-Аминоизомасляная

 

 

кислота

502

Начальные этапы реакции распада пиримидиновых нуклеотидов катализируются специфическими ферментами. Конечными продуктами реакции являются СО2, NH3, мочевина, β-аланин и β-аминоизомасляная кислота. Следует указать, что гидролитический путь распада пиримидинов является, очевидно, главным путем образования β-аланина, который может служить источником для синтеза ансерина и карнозина (см. главу 20), а также для образования КоА. Известно, что β-аланин в животных тканях подвергается дальнейшему распаду. В тканях животных открыта специфическая аминотрансфераза, катализирующая трансаминирование между β-аланином и пировиноградной кислотой. В процессе этой обратимой реакции синтезируются α-аланин и формилацетат (полуальдегид малоновой кислоты):

β-Аланин

ПВК

α-Аланин

Формилацетат

Образовавшийся формилацетат далее подвергается окислительному декарбоксилированию с образованием углекислоты и ацетил-КоА.

ОБМЕН ХРОМОПРОТЕИНОВ

Проблемы синтеза и распада хромопротеинов привлекают внимание как исследователей, так и практических врачей по двум основным причинам. Во-первых, вследствие широкого разнообразия биологически важных функций гемоглобина, хлорофилла и цитохромов, в молекулах которых центральную роль играет ядро порфирина, обладающее способностью координационно связываться с ионами металлов (см. главу 2). Во-вторых, изменения синтеза или распада порфиринов и соответственно их комплексов с белками приводят к нарушению жизненно важных функций и развитию болезней у человека и животных.

Вданном разделе будут рассмотрены современные представления о синтезе и распаде железопорфиринов, в частности гемоглобина–наиболее изученного хромопротеина.

Ворганизме человека содержится около 4,5–5,0 г железа. На долю гемоглобина крови из этого количества (если принять за 100% все железо

ворганизме) приходится 60–70%, миоглобина – 3–5%, ферритина–20% (от

17 до 23%), трансферрина–около 0,18%, функционального железа тканей – до 5%. Содержание железа в организме регулируется главным образом интенсивностью всасывания в кишечнике поступающего с пищей железа. Избыток его не всасывается. Потребность в железе резко возрастает при анемиях различного происхождения. Железо всасывается в кишечнике в виде неорганического двухвалентного иона Fe2+ после освобождения его из комплексов с белками. В клетках слизистой оболочки кишечника железо уже в трехвалентной форме Fe3+ соединяется с белком апоферритином с образованием стабильного комплекса ферритина. Дальнейший транспорт железа к местам кроветворения осуществляется в комплексе с β1-глобу-

503

линами сыворотки крови

(комплекс получил название

трансферрина)

или железо соединяется с

апоферритином тканей, где

и депонируется

в виде ферритина. При некоторых заболеваниях (например, при гемо-

хроматозе) избыток железа откладывается

в клетках системы макро-

фагов в виде гемосидерина – метаболически

инертного соединения желе-

за с белком.

 

Источниками железа для синтетических целей являются пищевые продукты, а также железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезенки (около 25 мг в сутки). Простетические группы пищевых хромопротеинов (гемоглобин, миоглобин), включая хлорофиллпротеины, не используются для синтеза железопротеинов организма, поскольку после переваривания небелковый компонент гем подвергается окислению в гематин, который, как и хлорофилл, не всасывается в кишечнике. Обычно эти пигменты выделяются с содержимым толстой кишки в неизмененной форме или в виде продуктов распада под действием ферментов кишечных бактерий. Следовательно, гемсодержащие соединения пищи не используются в качестве источника порфиринового ядра, а синтез сложного пиррольного комплекса в организме протекает из низкомолекулярных предшественников de novo.

Биосинтез гемоглобина

Учитывая, что белковая часть молекулы гемоглобина (глобин) синтезируется, как и все остальные белки, далее подробно рассмотрен биосинтез его простетической группы, т.е. синтез тетрапиррольного соединения – гема (см. главу 2).

К настоящему времени почти полностью выяснены основные пути образования порфиринов и протопорфиринов, являющихся непосредственными предшественниками гема и хлорофилла. Благодаря исследованиям Д. Шемина и др. выяснены основные пути синтеза гема. С помощью меченых предшественников было показано, что в синтезе гема в бесклеточных экстрактах эритроцитов птиц специфическое участие принимают глицин, уксусная и янтарная кислоты. Источником всех 4 атомов азота и 8 атомов углерода тетрапиррольного кольца оказался глицин, а источником остальных 26 из 34 атомов углерода – янтарная кислота (сукцинат), точнее ее производное сукцинил-КоА. Последовательность химических реакций синтеза тетрапирролов в организме животных можно условно разделить на несколько стадий.

На I стадии, протекающей в 2 этапа, сукцинил-КоА взаимодействует с глицином и образованием δ-аминолевулиновой кислоты (δ-АЛК).

HS-KoA

δ-Аминолевулинатсинтаза

CO2

 

Глицин

 

Сукцинил-КоА

 

 

δ-АЛК

504

Эту стадию катализирует специфический пиридоксальфосфатзависимый фермент δ-аминолевулинатсинтаза – ключевой, аллостерический фермент синтеза тетрапирролов.

Впервые эта синтаза была обнаружена в эндоплазматической сети клеток печени. Фермент индуцируется стероидами и другими факторами и ингибируется по типу обратной связи конечным продуктом биосинтеза – гемом.

На II стадии происходит конденсация 2 молекул δ-аминолевулиновой кислоты с образованием первого монопиррольного соединения–порфо- билиногена (ПБГ).

2O

Порфобилиногенсинтаза

δ-АЛК δ-АЛК Порфобилиноген

Фермент, катализирующий эту стадию,– порфобилиногенсинтаза также является регуляторным ферментом, подвергаясь ингибированию конечными продуктами синтеза. Предполагают, что механизм этой сложной реакции дегидратации включает образование кетиминной связи (шиффово основание) между кетогруппой одной молекулы δ-аминолевулиновой кислоты и δ-аминогруппой лизина молекулы фермента. В следующей многоступенчатой стадии, катализируемой соответствующими ферментами, из 4 монопиррольных молекул порфобилиногена синтезируется тетрапиррольный комплекс протопорфирин IX, являющийся непосредственным предшественником гема. Некоторые этапы сложного пути синтеза окончательно не установлены.

В заключительной стадии протопорфирин IX присоединяет молекулу железа при участии феррохелатазы (гемсинтазы), и образуется гем. Последний используется для биосинтеза всех гемсодержащих хромопротеинов.

Источником железа для этой реакции является ферритин, который считается резервным гемопротеином, откладывающимся в клетках костного мозга, печени и селезенки.

Имеются указания, что, помимо железа, в синтезе гема участвуют некоторые кофакторы, в частности витамин В1 2 , ионы меди, хотя конкретная их роль не раскрыта.

Таким образом, весь путь синтеза гема может быть представлен в виде схемы, в которой даны полные и сокращенные обозначения промежуточных метаболитов и ферментов.

505

Глицин

+ Сукцинил~S-KoA

δ-Аминолевулинат-

 

синтаза

СO2, KoA-SH

2 δ-Аминолевулиновая кислота (δ-АЛК)

Порфобилиноген-

2O

синтаза

 

4 Порфобилиноген (ПБГ)

УПГ-синтаза 4NH3

Уропорфириноген I

УПГ-косинтаза

Уропорфириноген III (УПГ)

УПГ-декарбоксилаза

4СO2

 

Копропорфириноген III (КПГ)

КПГ-декарбоксилаза

2СO2

 

КПГ-оксидаза

 

 

Протопорфириноген IХ (ППГ)

Протопорфирин IX

Fe2+

Феррохелатаза

ГЕМ

Распад гемоглобина в тканях (образование желчных пигментов)

Продолжительность жизни эритроцитов составляет 120 дней, затем они разрушаются и освобождается гемоглобин. Главными органами, в которых происходят разрушение эритроцитов и распад гемоглобина, являются печень, селезенка и костный мозг, хотя в принципе оба процесса могут происходить и в клетках других органов. Распад гемоглобина в печени начинается с разрыва α-метиновой связи между I и II кольцами порфиринового кольца. Этот процесс катализируется НАДФ-содержащей оксидазой и приводит к образованию зеленого пигмента вердоглобина (холеглобина):

506

Гемоксигеназа

(дециклизующая)

Гем (в составе гемоглобина) Гем (в составе вердоглобина)

В приведенных структурных формулах здесь и далее в желчных пиг-

ментах

М – метильная СН3-группа,

В – (—СН=СН2)–винильная группа

и П – (—СН2—СН2—СООН) – остаток

пропионовой кислоты.

Как

видно из приведенных формул, в молекуле вердоглобина еще

сохраняются атом железа и белковый компонент. Имеются экспериментальные доказательства, что в этом окислительном превращении гемоглобина принимают участие витамин С, ионы Fe2+ и другие кофакторы. Дальнейший распад вердоглобина, вероятнее всего, происходит спонтанно с освобождением железа, белка-глобина и образованием одного из желчных пигментов–биливердина. Спонтанный распад сопровождается перераспре-

делением двойных связей

и атомов водорода в пиррольных кольцах

и метиновых мостиках.

Образовавшийся биливердин ферментативным

путем восстанавливается в печени в билирубин, являющийся основным желчным пигментом у человека и плотоядных животных:

Биливердин

НАДФН + Н+

 

Биливердинредуктаза

 

 

НАДФ+

Билирубин

Основное место образования билирубина–печень, селезенка и, повидимому, эритроциты (при распаде их иногда разрывается одна из метиновых связей в протопорфирине). Образовавшийся во всех этих клетках билирубин поступает в печень, откуда вместе с желчью попадает в желчный пузырь (см. главу 16). Билирубин, образовавшийся в клетках системы макрофагов, называется свободным, или непрямым, билирубином, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин вступает во взаимодействие с диазореактивом Эрлиха.

В крови взрослого здорового человека содержится относительно постоянное количество общего билирубина – от 4 до 26 мкмоль/л, в среднем

507

15 мкмоль/л. Около 75% этого количества приходится на долю непрямого билирубина. Повышение его концентрации в крови до 35 мкмоль/л приводит к желтухе. Более высокий уровень билирубина в крови вызывает явления тяжелого отравления. Непрямой билирубин, поступая с током крови в печень, подвергается обезвреживанию путем связывания с глюкуроновой кислотой. В этом процессе принимают участие особый фермент УДФ-глюкуронилтрансфераза и УДФ-глюкуроновая кислота, являющаяся донором глюкуроновой кислоты. При этом к билирубину присоединяются 2 остатка глюкуроновой кислоты с образованием сравнительно индифферентного комплекса – билирубин-диглюкуронида, хорошо растворимого в воде и дающего прямую реакцию с диазореактивом. В желчи всегда присутствует прямой билирубин. В крови количество прямого и непрямого билирубина, а также соотношение между ними резко меняются при поражениях печени, селезенки, костного мозга, болезнях крови и т.д., поэтому определение содержания обеих форм билирубина в крови имеет существенное значение при дифференциальной диагностике различных форм желтухи. При желчнокаменной болезни в составе желчных камней наряду с основным их компонентом – холестерином всегда обнаруживается непрямой билирубин. Вследствие плохой растворимости в воде он выпадает в осадок в желчном пузыре в виде билирубината кальция, участвующего в формировании камней.

Дальнейшая судьба желчных пигментов, точнее билирубина, связана с их превращениями в кишечнике под действием бактерий. Сначала глюкуроновая кислота отщепляется от комплекса с билирубином и освободившийся билирубин подвергается восстановлению в стеркобилиноген, который выводится из кишечника. В сутки человек выделяет около 300 мг стеркобилиногена. Последний легко окисляется под действием света и воздуха в стеркобилин. Механизм бактериальных превращений билирубина до стеркобилина до конца еще не расшифрован. Имеются данные, что промежуточными продуктами восстановления являются последовательно мезобилирубин и мезобилиноген (уробилиноген). После всасывания небольшая часть мезобилиногена поступает через воротную вену в печень, где подвергается разрушению с образованием моно- и дипиррольных соединений. Кроме того, очень небольшая часть стеркобилиногена после всасывания через систему геморроидальных вен попадает в большой круг кровообращения, минуя печень, и в таком виде выводится с мочой. Однако называть его уробилиногеном не совсем точно (см. главу 18). Суточное содержание стеркобилиногена в моче составляет около 4 мг, и, пожалуй, именно стеркобилиноген является нормальной органической составной частью мочи. Если с мочой выделяется повышенное содержание уробилиногена (точнее, мезобилиногена), то это является свидетельством недостаточности функции печени, например, при печеночной или гемолитической желтухе, когда печень частично теряет способность извлекать этот пигмент из крови воротной вены. Химически уробилиноген (мезобилиноген) неидентичен стеркобилиногену (уробилиногену) мочи. Исчезновение стеркобилиногена (уробилиногена) из мочи при наличии билирубина и биливердина является свидетельством полного прекращения поступления желчи в кишечник. Такое состояние часто наблюдается при закупорке протока желчного пузыря (желчнокаменная болезнь) или общего желчного протока (желчнокаменная болезнь, раковые поражения поджелудочной железы и др.).

Таким образом, количественный и качественный анализ желчных пигментов в моче может представлять большой клинический интерес.

508

Глава 14

БИОСИНТЕЗ БЕЛКА

Целое есть нечто большее, чем простая сумма его частей.

Платон

Одной из глобальных задач современной биологии и ее новейших разделов: молекулярной биологии, биоорганической химии, физико-химической био- логии–является выяснение молекулярных основ и тонких механизмов синтеза белка, содержащего сотни, а иногда и тысячи остатков L-амино- кислот. Последние располагаются, как это установлено, не хаотично, а в строго заданной последовательности, обеспечивая тем самым уникальность структуры синтезированной белковой молекулы, наделенной уникальной функцией. Другими словами, механизм синтеза должен обладать весьма тонкой и точной кодирующей системой, которая автоматически программирует включение каждого аминокислотного остатка в определенное место полипептидной цепи. Установлено, что кодирующая система однозначно определяет первичную структуру, в то время как вторичная и третичная структуры белковой молекулы определяются фи- зико-химическими свойствами и химической структурой радикалов аминокислот в полипептиде.

Первоначально представляли, что синтез белка могут катализировать те же протеолитические ферменты, которые вызывают и его гидролиз, но путем обратимости химической реакции. Однако оказалось, что синтетические и катаболические реакции протекают не только различными путями, но даже в разных субклеточных фракциях. Не подтвердилась также гипотеза о предварительном синтезе коротких пептидов с последующим их объединением в одну полипептидную цепь. Более правильным оказалось предположение, что для синтеза белка требуются источники энергии, наличие активированных свободных аминокислот и нескольких типов клеточных нуклеиновых кислот.

В выяснение молекулярных механизмов синтеза белка определенный вклад внесли российские биохимики. Так, в лаборатории А.Е. Браунштейна было впервые указано на участие АТФ в синтезе квазипептидных связей (на примерах гиппуровой кислоты, глутамина, глутатиона и ацетанилида). В.Н. Орехович еще в 50-е годы установил, что перенос аминоацильных или пептидильных группировок на NH2-группу аминокислот может осуществляться не только с амидной или пептидной, но и со сложноэфирной связи. Как будет показано далее, именно этот механизм лежит в основе реакции транспептидирования в 50S рибосоме в стадии элонгации синтеза белка.

Значительно позже были получены доказательства, что в синтезе белка, протекающем в основном в цитоплазме, решающую роль играют нуклеиновые кислоты, в частности ДНК. После того как было установлено, что ДНК является носителем и хранителем наследственной информации, был поставлен вопрос о том, каким образом эта генетическая информация, записанная (зашифрованная) в химической структуре ДНК, трансформи-

509

Г е н

ДНК

мРНК

Я д р о

Рибосома

тРНК

Белок

Цитоплазма

Рис. 14.1. Принципиальная схема биосинтеза белка (по А.С. Спирину).

Красные кружочки - свободные аминокислоты и их остатки в составе полипептидной цепи.

руется в фенотипические признаки и функциональные свойства живых организмов, передающиеся по наследству. В настоящее время можно дать однозначный ответ на этот вопрос: генетическая информация программирует синтез специфических белков, определяющих в свою очередь специфичность структуры и функции клеток, органов и целостного организма (рис. 14.1). В природе, как известно, существует два типа биополимерных макромолекул: так называемые неинформативные биополимеры (они представлены повторяющимися мономерными единицами и/или разветвленными структурами, например полисахариды, поли-АДФ-рибоза, пептидогликаны, гликопротеины) и информативные биополимеры, несущие первичную генетическую информацию (нуклеиновые кислоты) и вторичную генетическую, точнее фенотипическую, информацию (белки). Эти общие представления могут быть выражены следующей последовательностью событий (поток информации):

ДНК>РНК>Белок>Клетка>Организм

Значительный вклад в современные представления о месте, факторах и механизме синтеза белка внесли исследования Т. Касперсона, М. Хогланда, П. Берга, П. Замечника, С. Очоа, М. Ниренберга, Н. Горовица, Ф. Гауровица, С. Вейсса и российских биохимиков А.А. Баева, А.Н. Бело-

зерского, А.С. Спирина и др.

Не останавливаясь на всех исторических аспектах развития этой важнейшей проблемы, следует напомнить, что еще в 40-х годах было уста-

510

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке підручники. біохімія