Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАТЕМАТИКА В ПРИМЕРАХ И ЗАДАЧАХ / Часть 6 / 31-32. Теория вероятностей. Математическая статистика.doc
Скачиваний:
209
Добавлен:
24.02.2016
Размер:
5.3 Mб
Скачать

I уровень

1.1. По двум независимым выборкам, объемы которых иизвлеченным из нормальных генеральных совокупностейX и Y, найдены исправленные выборочные дисперсии иПри уровне значимости 0,01 проверьте нулевую гипотезуо равенстве генеральных дисперсий при конкурирующей гипотезе

1.2.Из нормальной генеральной совокупности извлечена выборка объемаи по ней найдена исправленная выборочная дисперсияПри уровне значимости 0,01 проверьте нулевую гипотезуприняв в качестве конкурирующей гипотезы

1.3. По выборке объема найден средний вес изделий, изготовленных на первом станке,по выборке объемаm = 40 найден средний вес изделий, изготовленных на втором станке, . Генеральные дисперсии известны: иПри уровне значимости 0,05 проверьте нулевуюгипотезу при конкурирующей гипотезе Предполагается, что случайные величиныX и Y распределены нормально и выборки независимы.

1.4.Из нормальной генеральной совокупности с известным средним квадратическим отклонениемизвлечена выборка объемаи по ней найдена выборочная средняяПри уровне значимости 0,05 проверьте нулевую гипотезуH0:a = a0 = 26 при конкурирующей гипотезе

1.5.По выборке объемаизвлеченной из нормальной генеральной совокупности, найдены выборочная средняяи исправленное среднее квадратическое отклонениеПри уровне значимости 0,05 проверьте нулевую гипотезупри конкурирующей гипотезе

1.6.По 100 независимым испытаниям найдена относительная частотаПри уровне значимости 0,05 проверьте нулевую гипотезупри конкурирующей гипотезе

II уровень

2.1.По результатамзамеров установлено, что выборочное среднее время (в секундах) изготовления деталиПредполагая, что время изготовления – нормально распределенная случайная величина с дисперсиейрассмотрите на уровне 0,95 гипотезупротив конкурирующей гипотезы

2.2.Измерения одной и той же физической величины проведены двумя методами. Получены следующие результаты:

1) в первом случае

2) во втором случае

Выясните, можно ли считать, что оба метода обеспечивают одинаковую точность измерений, если принять уровень значимости Предполагается, что результаты измерений распределены нормально и выборки независимы.

2.3.Из нормальной генеральной совокупности извлечена выборка объема

xi

10,1

10,3

10,6

11,2

11,5

11,8

12,0

ni

1

3

7

10

6

3

1

При уровне значимости 0,05 проверьте нулевую гипотезу приняв в качестве конкурирующей гипотезы

2.4.Из двух партий изделий, изготовленных на двух одинаково настроенных станках, извлечены малые выборки, объемы которыхиПолучены следующие результаты:

Контролируемый размер изделий первого станка xi

3,4

3,5

3,7

3,9

Частота (число изделий) ni

2

3

4

1

Контролируемый размер изделий второго станка yi

3,2

3,4

3,6

Частота (число изделий) mi

2

2

8

При уровне значимости 0,02 проверьте гипотезу о равенстве средних размеров изделий при конкурирующей гипотезеПредполагается, что случайные величиныXиYраспределены нормально.

2.5.Проектный контролируемый размер изделий, выпускаемых станком-автоматом,Измерения 20 случайно отобранных изделий дали следующие результаты:

Контролируемый размер xi

34,8

34,9

35,0

35,1

35,3

Частота (число изделий) ni

2

3

4

6

5

При уровне значимости 0,05 проверьте гипотезу при конкурирующей гипотезе

2.6.В партии из 500 деталей, изготовленных первым станком-автоматом, 60 оказались нестандартными; из 600 деталей, произведенных вторым станком, – 42 нестандартные. При уровне значимости 0,01 проверьте гипотезуо равенстве вероятностей изготовления нестандартной детали обоими станками при конкурирующей гипотезе

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.