Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
96
Добавлен:
24.02.2016
Размер:
11.61 Mб
Скачать

Тема 5. Аккумулирование тепловой и

электрической энергии

5.1. Значение процессов аккумулирования.

Устройства для преобразования возобновляемой энергии по сравнению с установками на обычном и ядерном топлив различаются по требованиям к аккумулированию и передаче на расстояние. Такие особенности возобновляемых источников, как низкая интенсивность и рассеянность, делают для них предпочтительным децентрализованное потребление. Более того, энергию от этих источников часто не нужно будет передавать на большие расстояния, так как источники уже распределены в пространстве.

Так как полезность устройств для преобразования возобновляемой энергии основана на переработке независимых от нас естественных потоков, существует проблема приведения в соответствие выработки энергии и потребности в ней в рамкам временного спроса, т.е. в выравнивании скорости потребления энергии. Последняя изменяется во времени в масштаба месяцев (например, для обогрева жилищ в зонах умеренного климата), дней (например, для искусственного освещения) и даже секунд (в моменты включения крупных нагрузок). в противоположность энергетике на традиционном топливе получаемая из окружающей среды мощность возобновляемых источников нам не подконтрольна.

У нас есть выбор: либо подгонять нагрузку к интенсивности. доступной для преобразования возобновляемой энергии, либо накапливать энергию для последующего использования. У нас на выбор самые различные способы аккумулирования:

  • химические;

  • тепловые;

  • электрические, в форме потенциальной или кинетической энергии.

Аккумулирование энергии - не новая концепция в энергетике. Ископаемые топлива в этом смысле являются эффективным аккумулятором с высокой плотностью энергии. Однако по мере того, как источники топлива становятся все менее доступными и все более дорогими, появляется необходимость в развитии других методов аккумулирования, и в качестве одного из них - производства возобновляемого топлива.

5.2. Химическое аккумулирование.

Энергия может удерживаться в связях многих химических элементов и выделятся в процессе экзотермических реакций, из которых наиболее известно горение. Иногда необходимо применить для запуска такой реакции предварительной нагревание или катализаторы (например, энзимы). Биологические компоненты представляют особый случай. Здесь речь идет лишь о неорганических соединениях, являющихся наиболее распространенными аккумуляторами, энергия которых выделяется при сгорании в воздухе.

Водород. Может быть получен путем электролиза воды с помощью любого источника тока. В виде газа он может быть накоплен, передан на расстояние и сожжен для получения тепловой энергии. Единственным продуктом сгорания водорода является вода: не образуется никаких загрязняющих веществ. Энтальпия образования водорода Н=-242 кДж/моль, т.е. при образовании 1 моля Н2О (18 г) выделяется 242 Дж тепловой энергии. Хранить водород в больших количествах непросто. Наиболее обещающий способ - использование подземных каверн, подобных тем, из которых добывается природный газ. Но хранение газа - даже под высоким давлением - требует значительных объемов. Необходимо заметить, что водород можно передавать через разветвленную сеть трубопроводов, используемых сейчас для подачи природного газа во многих странах мира. Кроме того, существует возможность с большой эффективностью использовать его для непосредственного получения электроэнергии с помощью топливных элементов.

Аммиак. В отличие от воды аммиак может быть разложен на составляющие элементы при доступных температурах:

N2 + 3H2 2NH3

В сочетании с принципом теплового двигателя эта реакция может стать основой наиболее эффективного способа непрерывного получения электроэнергии за счет использования солнечного тепла.