Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Шпоры / Шпоры по сопромату по 20 тем / Классификация внешних сил и элементов конструкции

.doc
Скачиваний:
79
Добавлен:
04.01.2014
Размер:
31.23 Кб
Скачать

1.2. Классификация внешних сил и элементов конструкций

Внешние силы, действующие на элементы конструкций,' как известно из курса теоретической механики, делятся на активные и реактивные (реакции связей). Активные внешние силы принято называть нагрузками. Происхождение и характер действия нагрузки определяются назначением, условиями работы и конструктивными особенностями рассматриваемого элемента. Например, для приводного вала, изображенного на рис. 1.8, нагрузками являются силы, действующие на зубья колеса, и натяжения ветвей ремня, а также силы тяжести самого вала и насаженных на него деталей (зубчатого колеса и шкива).

Для стержней фермы мостового крана (рис. 1.9) основные нагрузки — силы тяжести поднимаемого груза и тележки; меньшее значение имеют силы тяжести фермы.

Основная нагрузка барабана парового котла — давление находящегося в нем пара.

В случае если рассматриваемый элемент конструкции движется с ускорением, то к числу действующих на него нагрузок относятся также силы инерции.

Силы тяжести данной части конструкции и силы инерции, возникающие при ее ускоренном движении, являются объемнымя сяламв, т. е. они действуют на каждый бесконечно малый элемент объема. Нагрузки, передающиеся от одних элементов конструкции к другим, относятся к числу поверхностных сил.

Поверхностные снлы делатся на сосредоточенные в распределенные. При этом следует помнить, что сосредоточенных сил, конечно, не существует — это абстракция, вводимая для удобства технических расчетов. Сила рассматривается как сосредоточенная, если она передается на деталь по площадке, размеры которой пренебрежимо малы в сравнении с размерами самого элемента конструкции. Например, силу давления колеса вагона на рельс можно рассматривать как сосредоточенную, так как хотя колесо и рельс в месте соприкосновения деформируются, но размеры площадки, получающейся в результате этой деформации, ничтожно малы по сравнению с размерами как рельса, так и колеса.

Нагрузки, распределенные по некоторой поверхности, характеризуются давлением, т. е. отношением силы, действующей на элемент поверхности нормально к ней, к площади данного элемента, и, следовательно, выражаются в паскалях (1 Па = = 1 Н/м~), МПа и т. д.

Во многих случаях приходится встречаться с нагрузками, распределенными по длине элемента конструкции,. например можно говорить о силе тяжести единицы длины балки, при этом если сечение балки непостоянно, то и сила тяжести единицы ее длины будет переменной.

Распределенная по длине нагрузка характеризуется интенсивностью, обозначаемой обычно q и выражаемой в единицах силы, отнесенных к единицам длины: Н/м, кН/м и т. п.

По характеру изменения во времени различают: статические нагрузки, нарастающие медленно и плавно от нуля до своего конечного значения; достигнув его, в дальнейшем не изменяются. Примером могут служить центробежные силы в период разгона и при последующем равномерном вращении какого-либо ротора;

повторные нагрузки, многократно изменяющиеся во времени по тому или иному закону. Примером такой нагрузки служат силы, действующие на зубья зубчатых колес;

нагрузки малой продолжительности, прикладываемые к конструкции сразу или даже с начальной скоростью в момент контакта (эти нагрузки часто называют динамическими или ударными). Примером ударной является, например, нагрузка, воспринимаемая деталями парового молота во время ковки.

Вопрос о связях и их реакциях достаточно подробно рассмотрен в курсе теоретической механики. Здесь ограничимся лишь напоминанием о наиболее распространенных типах связей.

Шарнирно-подвижная опора (односвязная опора) схематически изображается, как показано на рис. 1.10,а. Реакция такой опоры всегда перпендикулярна опорной поверхности.

Шарнирно-неподвижная опора (двухсвязная опора) схематически изображена на рис. 1.10,б. Реакция шарнирно-неподвижной опоры проходит через. центр шарнира, а ее направление зависит от действующих активных сил. Вместо отыскания числового значения и направления этой реакции удобнее искать отдельно две ее составляющие.

В жесткой заделке (трехсвязная опора) возникают реактивная пара сил (момент) и реактивная сила; последнюю удобнее представлять в виде двух ее составляющих (рис. 1.11).

Если связью служит стержень с шарнирами по концам (рис. 1.12), то реакция направлена вдоль его оси, т. е. сам стержень работает на растяжение или сжатие.

Формы элементов конструкций чрезвычайно разнообразны, но с большей или меньшей степенью точности каждый из них можно при расчетах рассматривать либо как брус, либо как оболочку или пластину, либо как массив.

В сопротивлении материалов в основном изучают методы расчетов на прочность, жесткость и устойчивость бруса, т. е. тела, два измерения которого невелики по сравнению с третьим (длиной). Представим себе плоскую фигуру, перемещающуюся вдоль некоторой линии таким образом, что центр тяжести фигуры находится на этой линии, а плоскость фигуры ей перпендикулярна. Полученное в результате такого движения тело и есть брус (рис. 1.13).

Плоская фигура, движением которой брус образован, является его поперечным сечением, а линия, вдоль которой перемещался ее центр тяжести,— осью бруса.

Ось бруса — это геометрическое место центров тяжести его поперечных сечений. В зависимости от формы оси бруса и того, как изменяется (или остается постоянным) его поперечное сечение, различают прямые и кривые брусья с постоянным, непрерывно или ступенчато изменяющимся поперечным сечением (рис. 1.14). В качестве некоторых примеров деталей, рассчитываемых как прямые брусья, можно указать приводной вал (см. рис. 1.8), любой из стержней фермы мостового крана (см. рис. 1.9); крюк этого крана рассчитывают как кривой брус.

Пластина и оболочка (рис. 1.15) характеризуются тем, что их толщина невелика по сравнению с остальными размерами. Пластину можно рассматривать как частный случай оболочки, так сказать, «распрямленную» оболочку. Примерами деталей, рассматриваемых как оболочки и пластины, являются различные резервуары для жидкостей и газов, элементы обшивки корпусов кораблей, подводных лодок, фюзеляжей самолетов.

Массивом называют тело, все три измерения которого — величины одного порядка, например фундамент под машину, шарик или ролик подшипника качения.