
- •Министерство образования и науки украины
- •Содержание
- •Глава 1 Арифметико-логические основы эвм
- •1.1 Информационные процессы
- •1.2. Обмен информацией между различными информационными устройствами
- •1.3. Аппаратные средства хранения и обработки информации
- •Глава 2 представление числовой информации в цифровом автомате
- •2.1. Системы счисления и понятие кода
- •2.2. Выбор системы счисления
- •2.3. Формальные правила двоичной арифметики
- •2.4. Перевод числа из одной позиционной системы счисления в другую
- •Глава 3 формы представления чисел в цифровых автоматах
- •3.1. Форма представления двоичных чисел с фиксированной запятой
- •3.2. Представление отрицательных чисел в формате с фиксированной запятой
- •3.3. Форма представление чисел с плавающей запятой
- •3.4. Перевод чисел из формата с фиксированной запятой в формат с плавающей запятой и обратно
- •3.5. Погрешности представления чисел
- •20 [A]ф2n- 1 для целых чисел
- •Глава 4. Арифметические действия с двоичными числами
- •4.1. Сложение двоичных чисел
- •4.1.1. Алгебраическое сложение чисел, представленных в форме с фиксированной запятой
- •4.1.2. Переполнение разрядной сетки
- •4.1.3. Модифицированный прямой, обратный и дополнительный код
- •4.1.4. Алгебраическое сложение чисел, представленных в форме с плавающей запятой
- •4.2. Умножение двоичных чисел
- •4.2.1. Методы умножения двоичных чисел
- •4.2.2. Умножение чисел, представленных в форме с фиксированной запятой
- •4.2.3. Умножение чисел, представленных в форме с плавающей запятой
- •4.2.4. Ускорение операции умножения
- •4.3. Деление двоичных чисел
- •4.3.1. Деление двоичных чисел, представленных в форме с фиксированной запятой.
- •4.3.2. Деление двоичных чисел, представленных в форме с плавающей запятой.
- •4.4. Оценка точности выполнения арифметических операций
- •4.4.1. Погрешность округления
- •Глава 5. Выполнение операций над двоично-десятичными числами
- •5.1. Представление десятичных чисел в д-кодах
- •5.2. Формальные правила поразрядного сложения в д-кодах
- •5.3. Представление отрицательных чисел в д-кодах
- •5.4. Выполнение операций сложения и вычитания в д-кодах
- •5.5. Умножение чисел в д-кодах
- •5.6. Деление чисел в д-кодах
- •5.7. Перевод чисел из д-кода в двоичный и из двоичного в д-код
- •Глава 6 Информационные основы цифровых автоматов
- •6.1. Понятие об информации и её преобразованиях
- •6.2. Преобразования алфавитной информации
- •6.3 Понятие об алгоритме
- •6.4 Понятие о дискретном (цифровом) автомате
- •Глава 7 Основы логического проектирования ца. Основные понятия алгебры логики.
- •7.1. Свойства элементарных функций алгебры логики
- •7.2. Аналитическое представление функций алгебры логики
- •7.3. Совершенные нормальные формы
- •7.4. Системы функций алгебры логики
- •7.5. Числовое и геометрическое представление фал
- •Глава 8 Минимизация функций алгебры логики
- •8.1 Метод Квайна
- •Ядро: мднф:
- •8.2 Метод Квайна-Мак-Класки
- •Простые импликанты: *111, 111*, 0**1
- •8.3 Метод Нельсона
- •8.4 Метод диаграмм Вейча
- •8.5 Метод самопонижающихся циклов
- •8.6 Минимизация монотонных функций
- •8.7 Минимизация конъюнктивных нормальных форм
- •8.8 Минимизация частично определенных булевых функций
- •8.9 Минимизация функций в базисах и-не и или-не
- •8.10 Минимизация систем булевых функций
- •Глава 9 Абстрактная теория автоматов
- •9.2 Декомпозиция абстрактных автоматов
- •Глава 10 Структурная теория автоматов
- •10.1 Композиция автоматов
- •Глава 11 Проектирование асинхронных цифровых автоматов
- •11.1 Проектирование комбинационных схем (кс) с учетом кобъед по входу и по выходу
- •11.2 Проектирование кс на дешифраторах и мультиплексорах
- •11.3 Проектирование кс на пзу
- •11.4 Проектирование кс на плм
- •Глава 12 Канонический метод структурного синтеза ца с памятью
- •12.1 Кодирование
- •12.2 Выбор элементов памяти автомата
- •12.3 Выбор структурно-полной системы элементов
- •12.4 Построение уравнений булевых функций возбуждения и выходов автомата
- •12.5 Построение функциональной схемы автомата
- •Глава 13 Обеспечение устойчивости функционирования ца
- •13.2 Проблема синтеза надёжных схем из ненадёжных элементов
- •13.3 Коды Хэмминга
- •Глава 14 Микропрограммные автоматы
- •14.2 Граф-схемы алгоритмов
8.3 Метод Нельсона
Метод позволяет получить СкДНФ булевой
функции
из ее произвольной КНФ. Если в произвольной
КНФ булевой функции
раскрыть все скобки и произвести все
поглощения, то в результате будет
получена СкДНФ булевой функции
.
Пример:
Найдем СкДНФ:
Произведем поглощения:
- СкДНФ.
8.4 Метод диаграмм Вейча
Метод получает МДНФ булевой функции небольшого числа переменных. Булевы функции задаются в виде специальных диаграмм. Для функции 2-х переменных и 3-х переменных:
Добавление к диаграмме 3-х переменных еще такой же даст диаграмму 4-х переменных, если приписать еще одну диаграмму 4-х переменных, то получим диаграмму для функции 5-ти переменных.
Правила склеивания конституэнт "1" на диаграммах Вейча: склеиванию подлежат прямоугольные конфигурации, заполненные конституэнтами "1" и содержащие число клеток, являющееся степенью 2. Получающееся новое элементарное произведение определяется как произведение переменных, не меняющих своего значения на всех склеиваемых наборах. Минимизация булевой функции заключается в нахождении минимального накрытия всех единиц диаграммы Вейча блоками из единиц, расположенных в соседних клетках диаграммы.
Примеры: Булевы функции заданы диаграммами Вейча. Найти их МДНФ.
8.5 Метод самопонижающихся циклов
М
x1 x2 … xm-3 xn-2 xn-1 xn f … … … … … … … … … n 0 0 0 1 … n 0 0 1 1 .
. 0 1 0 1 .
. 0 1 1 1 .
. 1 0 0 1 .
. 1 0 1 1 .
. 1 1 0 1 … n 1 1 1 1 … … … … … … … …
Если в таблице истинности произвольной
булевой функции
существует фрагмент вида (см. таблицу),
то ее СкДНФ на этом фрагменте описывается
выражением
,
так как по переменным
может быть произведено полное склеивание.
Никаких ограничений на число склеенных
переменных и размещение их во фрагменте
таблицы истинности булевой функции не
накладывается. Если имеется фрагмент,
содержащий
двоичных наборов длины n, где m – число
склеенных переменных, то такой фрагмент
описывается конъюнкцией ранга (n-m) в
представлении булевой функции
СкДНФ по этому фрагменту. Фрагмент вида
(см. таблицу) называется самопонижающимся
циклом, а число склеенных переменных
во фрагменте – рангом самопонижающегося
цикла.
Пример:
Найти СкДНФ булевой функции
методом самопонижающихся циклов. Функция
задана таблицей истинности.
И
щем циклы максимального ранга
. Имеется только один такой цикл №1
. Найденный цикл покрывает не все "1" таблицы истинности функции
.
Ищем циклы ранга
. Имеется два таких цикла №2 и №3. Цикл №3 полностью содержится в цикле №1, поэтому цикл №3 не рассматривается. Поиск цикла меньшего ранга не нужен, так как циклы 1 и 2 полностью покрывают конституэнты "1" функции
.
СкДНФ: