Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мех и молек.doc
Скачиваний:
171
Добавлен:
21.02.2016
Размер:
1.61 Mб
Скачать

Порядок выполнения работы

1. Отметим на исследуемой проволоке какую-нибудь точку, для чего укрепим на ней кусочек тонкой проволоки.

2. Наведем на эту точку отсчетный микроскоп и заметим деление на шкале микроскопа, которое совпадает с указанной точкой. После этого кладем на чашку груз массой.

  1. Определяем удлинение проволоки, вызванное нагрузкой ,

Здесь пересчетный коэффициент измерительного микроскопа, переводящий удлинение в делениях шкалы, видимой в окуляре, в миллиметры. Каждому значению длины тубуса микроскопа соответствует свое значение, которое указано в таблице на установке.

4. Вычисляем модуль Юнга по формуле (5), значение иуказаны на табличке возле установки.

5. Опыты повторить с другими значениями масс ,.

  1. Результаты опытов занести в таблицу:

№ опыта

1

2

3

Контрольные вопросы

1.Что называется деформацией, виды деформаций?

2.Какими величинами характеризуют деформацию растяжения (сжатия)?

3.Как читается закон Гука и для каких деформаций он справедлив?

4.Какой физический смысл модуля Юнга?

Литература.

  1. Детлаф А.А., Яворский Б.М., Милковская Л.Б. "Курс физики" ч.1.

  2. Шубин А.С. "Курс общей Физики".

  3. Грабовский Р.И. "Курс физики".

Лабораторная работа № 4 опытная проверка уравнения бернулли

Цель работы: Изучить законы стационарного движения жидкости.

Задача: Проверить опытным путем уравнение Бернулли, вычислив

экспериментально и теоретически расход жидкости.

Краткая теория

Раздел физики, в котором рассматривают законы равновесия и движения жидких и газообразных тел, а также их взаимодействия с твердыми телами, называют гидроаэромеханикой.

Характерное свойство жидких и газообразных тел – их текучесть, т.е. малая сопротивляемость деформации сдвига: если скорость сдвига стремится к нулю, то силы сопротивления жидкости или газа этой деформации также стремятся к нулю. Иными словами, жидкие и газообразные тела не обладают упругостью формы – они легко принимают форму того сосуда, в котором находятся. Вследствие этого внешнее давление, производимое на жидкость или газ, передается ими во все стороны равномерно (закон Паскаля).

Движение жидкостей или газов называют течением, а совокупность частиц движущейся жидкости или газа называют потоком. В гидромеханике отвлекаются от молекулярного строения жидкостей и газов, рассматривая их как сплошную среду.

Течение жидкости называют установившимся или стационарным, если скорость жидкости в каждой точке пространства, занятого жидкостью, не изменяется с течением времени, т.е. V не зависит от t. В случае неустановившегося течения V зависит также от времени t.

Течение называют ламинарным или слоистым в том случае, если поток представляет собой совокупность слоев, перемещающихся друг относительно друга без перемешивания. Течение называют турбулентным, если имеет место перемешивание различных слоев жидкости или газа вследствие образующихся завихрений.

В целях наглядности движение жидкости можно изображать с помощью линий тока, которые проводят так, что касательные к ним совпадают по направлению с векторами скоростей жидкости в соответствующих точках пространства. В случае стационарного течения линии тока не изменяются с течением времени и совпадают с траекториями отдельных частиц жидкости.

Поверхность, которая образована линиями тока, проведенными через все точки малого замкнутого контура, называют трубкой тока. Часть жидкости, ограниченную трубкой тока, называют струей.

В реальных жидкостях течение усложняется тем, что между отдельными слоями потока происходит внутреннее трение. Однако в ряде случаев влияние внутреннего трения невелико и им можно пренебречь. Жидкость, в которой отсутствует внутреннее трение, называют идеальной жидкостью. Поэтому изучая движение идеальной жидкости, можно установить ряд закономерностей, которые с известным приближением применимы к течению реальных жидкостей.

При переходе потока жидкости из трубки с большим диаметром Дв трубку с меньшим диаметром Дпроисходит увеличение скорости течения от значенияVдо значения V. Соотношение между скоростями течения Vи Vзадается уравнением неразрывности струи: SV = Const

или для двух сечений: SV=SV (1)

Если S=, то уравнение (1) перепишется: VД= VД (2)

Изменение скорости течения влечет изменение давления, которое можно определить из уравнения Бернулли:

Для горизонтальной трубки уравнение Бернулли запишется:

, отсюда

P - P = , (3)

Где P, Vи P, V-давления и скорости в сечениях Ди Дсоответственно; - плотность жидкости.

Решая совместно уравнения (2) и (3), найдем скорость течения V:

V= (4)

Воспользовавшись уравнением неразрывности струи, найдем секундный объемный расход жидкости:

(5)

Экспериментально секундный объемный расход жидкости можно определить, измеряя время t наполнения жидкостью баллона объемом V:

W= (6)

Сравнение результатов измерений секундного объемного расходов жидкости, полученным по формулам (5) и (6), может служить проверкой справедливости уравнения Бернулли.