Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
21
Добавлен:
16.02.2016
Размер:
82.94 Кб
Скачать

Лекция № 40. Расчет тонкостенных сосудов и резервуаров.

   Если толщина стенок цилиндра мала по сравнению с радиусами и , то известное выражение для тангенцальных напряжений приобретает вид

т. е. величину, определенную нами раньше (§ 34).

   Для тонкостенных резервуаров, имеющих форму поверхностей вращения и находящихся под внутренним давлением р, распределенным симметрично относительно оси вращения, можно вывести общую формулу для вычисления напряжений.

   Выделим (Рис.1) из рассматриваемого резервуара элемент двумя смежными меридиональными сечениями и двумя сечениями, нормальными к меридиану.

Рис.1. Фрагмент тонкостенного резервуара и его напряженное состояние.

 

   Размеры элемента по меридиану и по перпендикулярному к нему направлению обозначим соответственно и , радиусы кривизны меридиана и перпендикулярного к нему сечения обозначим и , толщину стенки назовем t.

   По симметрии по граням выделенного элемента будут действовать только нормальные напряжения в меридиальном направления и в направлении, перпендикулярном к меридиану. Соответствующие усилия, приложенные к граням элемента, будут и . Так как тонкая оболочка сопротивляется только растяжению, подобно гибкой нити, то эти усилия будут направлены по касательной к меридиану и к сечению, нормальному к меридиану.

   Усилия (Рис.2) дадут в нормальном к поверхности элемента направлении равнодействующую ab, равную

Рис.2. Равновесие элемента тонкостенного резервуара

 

   Подобным же образом усилия дадут в том же направлении равнодействующую Сумма этих усилий уравновешивает нормальное давление, приложенное к элементу

Отсюда

   Это основное уравнение, связывающее напряжения и для тонкостенных сосудов вращения, дано Лапласом.

   Так как мы задались распределением (равномерным) напряжений по толщине стенки, то задача статически определима; второе уравнение равновесия получится, если мы рассмотрим равновесие нижней, отрезанной каким-либо параллельным кругом, части резервуара.

   Рассмотрим случай гидростатической нагрузки (рис.3). Меридиональную кривую отнесем к осям х и у с началом координат в вершине кривой. Сечение проведем на уровне у от точки О. Радиус соответствующего параллельного круга будет х.

Рис.3. Равновесие нижнего фрагмента тонкостенного резервуара.

 

   Каждая пара усилий , действующих на диаметрально противоположные элементы проведенного сечения, дает вертикальную равнодействующую , равную

сумма этих усилий, действующих по всей окружности проведенного сечения, будет равна ; она будет уравновешивать давление жидкости на этом уровне плюс вес жидкости в отрезанной части сосуда .

Отсюда

   Зная уравнение меридиональной кривой, можно найти , х и для каждого значения у, и стало быть, найти , а из уравнения Лапласа и

Например, для конического резервуара с углом при вершине , наполненного жидкостью с объемным весом у на высоту h, будем иметь:

тогда

   Для сферического сосуда радиусом , находящегося под внутренним давлением , по симметрии ; тогда из уравнения (Лапласа), так как

и

   Если меридиональная кривая будет иметь переломы с разрывом непрерывности угла , то равновесие тонкой оболочки у места перелома может быть обеспечено лишь наличием реакций, приложенных к оболочке по окружности в этом месте. Появление таких реакций обеспечивается устройством специальных колец, способных брать на себя усилия, возникающие в них в связи с неуравновешенностью напряжений по обе стороны точки перелома.

Соседние файлы в папке Лекции по сопромату №2