Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
68
Добавлен:
14.12.2015
Размер:
58.88 Кб
Скачать

Векторный способ задания движения точки

Пусть точка Р движется в пространстве относительно некоторой системы отсчета Oxyz. Положение этой точки в любой момент времени можно определить, задав ее радиус-вектор r, проведенный из начала координат в точку Р.

При движении точки Р вектор r будет изменяться с течением времени t, вообще говоря, и по модулю, и по направлению. Следовательно, r является переменным вектором (вектором-функцией), зависящим от аргумента t:

r = r(t).

Эта векторная функция определяет закон движения точки в векторной форме, так как она позволяет в любой момент времени построить вектор r и найти положение движущейся точки.

Геометрическое место концов векторов r(t), называемое также годографом вектора r, определяет траекторию движущейся точки.

Как известно, вектор может быть задан аналитически либо его модулем и углами с осями координат, либо его проекциями на эти оси.

Скоростью точки в данный момент времени называется вектор v, равный первой производной от ее радиуса-вектора r по времени:

v = dr/dt =  ;  (Производную по времени принято в механике обозначать точкой над дифференцируемой величиной).

Вектор скорости, характеризующий изменение с течением времени модуля и направления радиуса-вектора точки, направлен по касательной к траектории точки в сторону ее движения.

При прямолинейном движении вектор скорости v все время направлен вдоль прямой, по которой движется точка, и может изменяться лишь по величине; при криволинейном движении кроме модуля все время изменяется и направление вектора скорости точки.

В качестве единиц измерения скорости применяют обычно м/с или км/ч.

Ускорением точки в данный момент времени называется вектор a, равный первой производной от вектора скорости v или второй производной от ее радиуса-вектора r по времени:

a = dv/dt = dr2/dt2 ; или a =  =  .

Ускорение точки, как векторная величина, характеризует изменение с течением времени модуля и направления вектора скорости точки.

Рассмотрим, как располагается вектор a по отношению к траектории точки.  При прямолинейном движении вектор a направлен вдоль прямой, по которой движется точка. Если траекторией является пространственная кривая, то вектор a направлен в сторону вогнутости траектории и лежит в соприкасающейся плоскости. Так называют плоскость, в которой происходит бесконечно малый поворот касательной к траектории при элементарном перемещении dr =vdt движущейся точки (подробнее это понятие изложено при задании движения точки естественным способом). Для пространственной кривой в каждой ее точке будет, вообще говоря, своя соприкасающаяся плоскость. Для плоской кривой соприкасающаяся плоскость совпадает с плоскостью этой кривой и является общей для всех ее точек.

В качестве единицы измерения ускорения применяется обычно м/с2

Координатный способ задания движения точки

Рассмотрим движение в пространстве точки Р по отношению к декартовой прямоугольной системе координат Oxyz. Проекции rx, ry, rz ее радиуса-вектора r равны декартовым координатам точки: rx= x, ry= y, rz= z (см. рис.). Следовательно, зависимость r(t) будет известна, если будут заданы координаты x, y, z как функции времени.

Чтобы знать закон движения точки, то есть ее положение в пространстве в любой момент времени, надо задать зависимость координат точки по времени:

x = x(t); y = y(t); z = z(t).

Эти зависимости представляют собой уравнения движения точки в прямоугольных декартовых координатах. Они определяют закон движения точки при координатном способе задания движения.

Движение точки можно задавать с использованием и других систем координат, например, вполярных координатах.

Если движение точки происходит все время в одной и той же плоскости, то, приняв эту плоскость за координатную плоскость Oxy, получим в этом случае два уравнения движения:

x = x(t); y = y(t).

При прямолинейном движении точки, если вдоль ее траектории направить ось Ox, движение будет определяться одним уравнением (законом прямолинейного движения точки):

x = x(t).

Естественный способ задания движения точки

Естественным способом задания движения точки удобно пользоваться в тех случаях, когда траектория движущейся точки заранее известна.

Пусть кривая АВ является траекторией точки Р при ее движении относительно системы отсчета Oxyz. Выберем на этой траектории какую-нибудь фиксированную точку O*, которую примем за начало отсчета, и установим на траектории положительное и отрицательное направления отсчета (как на координатной оси). Тогда положение точки Р на траектории будет однозначно определятьсякриволинейной (дуговой) координатой s, которая равна расстоянию от точки O* до точки Р, измеренному вдоль дуги траектории и взятому с соответствующим знаком.

При движении точка Р перемещается по траектории и, следовательно, координата s будет с течением времени изменяться. Чтобы знать положение точки Р на траектории в любой момент времени, надо знать зависимость

s = s(t).

Это уравнение и выражает закон движения точки вдоль траектории.

Таким образом, чтобы задать движение точки естественным способом, надо знать:

  1. траекторию точки;

  2. начало отсчета на траектории с указанием положительного и отрицательного направлений отсчета;

  3. закон движения точки вдоль траектории в виде s =s(t).

Заметим, что координата s определяет положение движущейся точки, а не пройденный ею путь.

Например, пусть точка Р начинает движение из начала отсчета O* в положительном направлении, доходит до некоторого положения, останавливается и затем перемещается в обратном направлении. Тогда до остановки точки координата s и пройденный ею путь будут совпадать, а после остановки будут отличаться, так как координата s будет уменьшаться, а пройденный путь по-прежнему будет увеличиваться.

Соседние файлы в папке вопросы