Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Жуленко-Ветеринарная токсикология.doc
Скачиваний:
1416
Добавлен:
18.06.2015
Размер:
1.99 Mб
Скачать

1.8. Избирательная токсичность

Различия в чувствительности животных разных видов к одно­му и тому же токсическому веществу определяются понятием «избирательная токсичность». Так, например, ЛД5о хлорофоса — фосфорорганического инсектицида — при введении внутрь для белых мышей равна 600 мг/кг, для кур— 180мг/кг (Г. Шрадер, 1964; Б. А. Фролов, 1966), тролена — другого фосфорорганическо­го соединения — 1800 и 5000 мг/кг соответственно (Мак Коллис-тер, 1967). Таким образом, чувствительность кур к хлороформу <>к;палась в 3 раза выше, чем мышей, тогда как к тролену — в t раза ниже. Хлорофос является производным фосфоновой кисло­ты, имеет в алкоксифосфорильной части молекулы Р=О-группу, за счет которой в основном и проявляется физиологическое дей­ствие пестицида, связанное с подавлением активности холинэс-теразы. Тролен является производным тиосфосфорной кислоты, имеет в своем составе P=S-rpynny, обладающую очень низкой антихолинэстеразной активностью в условиях in vitro. В организ­ме животных происходит окисление P=S-rpynnbi в Р-О-группу, которая обладает исключительно высокой антихолинэстеразной активностью, за счет чего и проявляется физиологическое дей­ствие тролена. Так как активность ферментов, вызывающих этот процесс у мышей и кур, неодинакова, различны и скорость обра­зования оксиизомера, а следовательно, и степень физиологичес­кой активности самого пестицида.

В большинстве случаев к действию токсических веществ наи­более чувствительны низкоорганизованные живые организмы. Например, по отношению к инсектоакарицидам наиболее чув­ствительны насекомые и клещи, затем в убывающем ряду идут рыбы, птицы и млекопитающие. Это, по-видимому, объясняется эволюционным развитием: чем выше на эволюционной лестнице стоит животное того или иного вида, тем более организованны его защитные системы, и прежде всего ферменты, ответственные за метаболизм токсического начала. Поэтому у высокоорганизован­ных животных токсическое вещество подвергнется разрушению прежде, чем достигнет места своего действия.

Однако такая закономерность не распространяется на все ток­сиканты. Избирательная токсичность во многом зависит от меха­низма физиологического действия токсического вещества, от того, через какие функциональные системы проявляется токси­ческий эффект и насколько они сформировались у тех или иных организмов. Например, фосфорорганические инспектициды об­ладают очень высокой физиологической активностью по отноше­нию к личиночным, нимфальным и имагинальным стадиям насе­комых и клещей и совершенно не действуют или очень слабо дей­ствуют на их яйца. Эти же соединения не обладают бактерицид­ным или вирулицидным действием и очень слабо действуют на простейшие, в частности на инфузории. Это, по-видимому, объяс­няется тем, что ФОС — яды нервно-токсического действия. Их патогенетическое влияние проявляется в результате подавления активности ферментов, участвующих в отправлениях функций нервной системы. У яиц насекомых и клещей, у бактерий и инфу­зорий отсутствует развитая нервная система, характерная для вы­сокоорганизованных живых существ, через которую и проявляет­ся патогенетическое действие ФОС. У бактерий и простейших нет подобных ферментов, поэтому ФОС не могут оказать патогенети­ческого влияния.

Детоксикация ядов в организме высших животных происхо­дит главным образом в печени, которая выполняет барьерную функцию. Однако у животных отдельных видов, например у жвачных, немаловажную защитную роль играют микроорганиз­мы и ферменты желудочно-кишечного тракта. Барьерная функ­ция пищеварительного тракта еще недостаточно выявлена, хотя ее значение подтверждается многими экспериментами и наблю­дениями.

Свойство микроорганизмов и ферментов желудочно-кишечно­го тракта детоксицировать токсические вещества сформировалось не как специальная функция, подобная печени, а как попутный фактор, выработавшийся в процессе приспособления многих жи­вотных, особенно жвачных, разрушать прочные органические суб­страты до простых усвояемых соединений.

Однако с развитием детоксицирующих функций желудочно-кишечного тракта у животных некоторых видов ослабла, по-види­мому, барьерная функция печени. Это предопределило и характер избирательной токсичности ядов. Травоядные животные, особен­но жвачные, наиболее чувствительны к тем ядам, детоксикация которых происходит за счет ферментов печени, и устойчивы к со­единениям, быстро обезвреживающимся под действием микроор­ганизмов желудочно-кишечного тракта. Например, крупный рога­тый скот более чувствителен к хлорофосу, чем другие млекопита­ющие. ЛД5о этого пестицида для белых крыс составляет 600 мг/кг, для свиней — около 500, для овец —375, для крупного рогатого скота — около 250 мг/кг (Полоз, 1975). ЛД5о тиофоса-О,О-диэтил-О-(я-нитрофенил)-тиофосфата для крыс — 12 мг/кг. Введение этого пестицида корове с кормом в дозе 12 мг/кг массы животного в течение 13нед не вызывает каких-либо изменений в здоровье животных (J. E. Pankaskie et al., 1952).

Это объясняется тем, что паранитрофенол в молекуле тиофоса под действием микроорганизмов рубца очень быстро имминиру-ется в аминофенол, вследствие чего падают электроиндуктивная напряженность в молекуле соединения и его токсичность. Следо­вательно, детоксикация тиофоса, как и других подобных соедине­ний, имеющих в молекуле нитрогруппы, происходит в основном под действием микроорганизмов. Поэтому чувствительность к со­единениям у животных, у которых микробная активность выраже­на сильнее, будет меньше, чем у видов с относительно низким уровнем этой активности. Такими же факторами объясняется и более высокая устойчивость мелкого рогатого скота, в частности овец, к действию большинства токсических агентов. Овцы и козы всегда содержатся на более худших пастбищах, чем крупный рога­тый скот. В результате у них выше разнообразие видов микроорга­низмов в желудочно-кишечном тракте и они приспособились к перевариванию и усвоению значительно более грубых кормов, чем крупный рогатый скот. Эти микроорганизмы воздействуют не только на растения с большим содержанием клетчатки, но и на токсические вещества, попавшие в пищеварительный тракт.

Многие факторы, определяющие избирательную токсичность химических агентов, еще недостаточно изучены, особенно на крупных животных, так как постановка опытов на них связана с определенными трудностями и большими материальными затра­тами.

1.9. АДАПТАЦИЯ И СЕНСИБИЛИЗАЦИЯ К ЯДАМ

Вопросы изучения адаптации организма к токсическим веще­ствам имеют большое значение, так как по мере развития про­мышленности и сельского хозяйства, увеличения выброса в окру­жающую среду различных токсических агентов возрастает веро­ятность проникновения их в организм человека и животных. Естественно, возникает вопрос, не достигнет ли загрязнение окру­жающей среды, кормов и продуктов питания такого уровня, кото­рый может привести к гибели всего живого.

Практика применения некоторых химических веществ, осо­бенно высокотоксичных пестицидов в течение длительного вре­мени в больших масштабах, не привела к массовой гибели наибо­лее чувствительных представителей животного мира.

Опыты показывают, что организм сравнительно быстро привы­кает к большинству ядов. Хорошо известно, что в древности мно­гие властители, боясь отравлений, постепенно приучали свой организм к ядам и оставались живыми от нескольких смертельных доз токсических веществ. По-видимому, существует определенная взаимосвязь между стабильностью химического яда и возможнос­тью организма приспосабливаться к его действию. Наблюдения над резистентными насекомыми показывают, что у них наиболее быстро развивается устойчивость к ДДТ, альдрину, мышьяку и другим персистентным ядам, обладающим замедленным токси­ческим эффектом, и слабее к ядам острого действия — хлорофосу, ДДВФ, циодрину и другим аналогичным инсектицидам.

Однако закономерности адаптации к ядам, свойственные насе­комым, едва ли будут характерны для высших животных, так как механизм привыкания членистоногих и позвоночных разный. У членистоногих адаптация развивается в результате естественного отбора наиболее устойчивых особей, передачи этих признаков по наследству и закрепления их в генетическом коде. У высших жи­вотных развитие адаптации возможно в течение одной жизни вследствие изменения ферментов, которые становятся способны­ми разрушать относительно высокие дозы токсических веществ. H.T.Reynolds et al. (1976) установили, что при введении овцам nin1 ДДТ в течение 18 нед в дозе 250 и 2500 ч/млн корма содержа­ние остатков его в жире повышалось лишь в первые 8 нед. В дальпейшем, несмотря на продолжающееся поступление в организм пестицида, содержание его в тканях не увеличивалось. Аналогич­ная закономерность отмечается со многими другими пестицида­ми. По мере увеличения продолжительности его поступления в организм одновременно с уменьшением степени материальной кумуляции химического вещества отмечается снижение его физи­ологической активности, т. е. организм приспосабливается к это­му яду, что, по-видимому, связано с увеличивающейся способнос­тью организма разрушать токсическое вещество.

Однако приспособительные реакции такого рода развиваются не ко всем химическим веществам. Физиологическая активность некоторых соединений по мере увеличения кратности поступле­ния их в организм возрастает. Примером таких веществ служат антикоагулянты из группы кумарина (зоокумарин, бромадиолон и др.), применяемые в борьбе с грызунами.

Механизм сенсибилизации недостаточно ясен. Возможно, спо­собность организма адаптироваться к одним химическим веще­ствам и повышать реакцию на другие связана с характером их фи­зиологического действия: одни вещества вызывают глубокие био­химические и морфологические сдвиги в организме или такие из­менения, к которым организм быстро приспосабливается и обеспечивает их компенсацию; другие вызывают значительные изменения, которые восстанавливаются очень медленно, к кото­рым организм не в состоянии выработать компенсаторные реак­ции. Степень этих изменений нарастает пропорционально крат­ности введения яда.