Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biokhimia_EKZ_1.docx
Скачиваний:
88
Добавлен:
31.05.2015
Размер:
1.81 Mб
Скачать

-Глобулины.

Трансферрин– связывает и транспортирует железо в различные ткани, регулирует концентрацию. М.М. 90 кД, концентрация – 2 – 3 г/л, синтезируется в печени и в макрофагальной системе. Имеет 2 активных центра, связывает 2 атома железа. Связывает и переноситZn,Cuи витаминD.

Трансферрин предотвращает избыточное накопление Fe3+в тканях и потерю его с мочой.

Уменьшение содержания трансферрина отмечается при гепатитах, опухолях, нефротическом синдроме. Повышение содержания связано с усиленным распадом эритроцитов.

Холестерин в патологии.

    1. Холестериноз – накопление содержания холестерина в организме.

    1. Не осложненный холестериноз – (физиологическое старение, старость, естественная смерть) проявляется накоплением холестерина в плазматических мембранах клеток в связи с уменьшением синтеза стероидных гормонов (стероидогенеза).

    2. Осложненный – атеросклероз в форме ишемической болезни сердца (инфаркт миокарда), ишемия мозга (инсульт, тромбоз), ишемия конечностей, ишемии органов и тканей, связанный с уменьшением желчегенеза.

    1. Изменения содержания холестерина в плазме крови.

    1. Семейная гиперхолестеринэмия – обусловлена дефектом рецепторов для ЛНП. В результате холестерин не поступает в клетки и накапливается в крови. Рецепторы по химической природе являются белками. В результате развивается ранний атеросклероз.

    1. Накопление холестерина в отдельных органах и тканях.

Болезнь Вольмана – первичный семейный ксантоматоз – накопление эфиров холестерина и триглицеридов во всех органах и тканях, причина дефицит лизосомальной холестеринэстеразы. Ранняя смерть.

Семейная гиперхолестенинэмия или -липопротеинэмия. Нарушается поглощение ЛНП клетками, повышается концентрация ЛНП, а также холестерина. При-липопротеинэмии наблюдается отложение холестерина в тканях, в частности в коже (ксантомы) и в стенках артерий. Отложение холестерина в стенках артерий главное биохимическое проявление атеросклероза. Вероятность заболевания атеросклерозом тем выше, чем больше отношение концентраций ЛНП и ЛВП в крови (ЛНП снабжает клетки холестерином, ЛВП удаляет из них избыток холестерина). Холестерин образует в стенках сосудов бляшки. Бляшки могут изъязвляться и язвы зарастают соединительной тканью (образуется рубец), в которую откладываются соли кальция. Стенки сосудов деформируются, становятся жесткими, нарушается моторика сосудов, суживается просвет вплоть до закупорки.

Гиперхолестеринемия – главная причина отложения холестерина в артериях. Но важное значение имеют также первичные повреждения стенок сосудов. Повреждения эндотелия могут возникать в следствие гипертонии, воспалительных процессов.

В области повреждения эндотелия в стенку сосудов проникают компоненты крови, в том числе липопротеиды, которые поглощаются макрофагами. Мышечные клетки сосудов начинают размножаться и тоже фагоцитировать липопротеиды. Ферменты лизосом разрушают липопротеиды, кроме холестерина. Холестерин накапливается в клетке, клетка гибнет, а холестерин оказывается в межклеточном пространстве и инкапсулируется соединительной тканью – образуется атеросклеротическая бляшка.

Между отложением холестерина в артериях и липопротеидами крови происходит обмен, но при гиперхолестеринемии преобладает поток холестерина в стенки сосудов.

Методы профилактики и лечения атеросклероза направлены на уменьшение гиперхолестеринемии. Для этого применяют малохолестериновую диету, лекарства увеличивающие эксткрецию холестерина или ингибирующие его синтез, прямое удаление холестерина из крови методом гемодиффузии.

Холестираминсвязывает желчные кислоты и исключает их из кишечно-печеночного кровобращения, что приводит к усилению окисления холестерина в желчные кислоты.

Билет 53

Липопротеид состоит из гидрофобного ядра, образованного триглицеридами и холестерином. Снаружи гидрофобное ядро окружено белком, это фактор стабильности липопротеида (заряд белковой молекулы и водная оболочка не позволяет частицам слипаться).

Фосфолипиды связаны с белком, а хвост фосфолипида погружен в гидрофобное ядро. Фосфолипиды выполняют функцию связывания за счет дифильности. Липопротеид – это не макромолекула, т.к. здесь есть гидрофобные взаимодействия, слабые полярные взаимодействия. Это надмолекулярная структура, она может терять или приобретать новые компоненты.

  1. Хиломикроны – самые крупные липопротеиды. Содержат 2% белка, 98% липиды, в основном триглицериды, которые поступают с пищей.

Синтезируются в кишечнике, переносят в основном триглицериды пищи, холестерин из кишечника в жировую ткань и печень. Триглицериды в составе хиломикронов легко гидролизуются в капиллярах жировой ткани и других периферических тканях.

В составе липопротеидов обязательно есть белок. Белки липопротеидов называются аполипопротеинами. Они бывают А,В,С,Д,Е (апо А, апо Е).

Хиломикроны содержат апо-А,В,С,Е.

Плазма крови желтая, прочная, аполесцирующая жидкость. После еды плазма мутная, хилезная, из-за высокого содержания хиломикронов.

  1. Липопротеиды очень низкой плотности – ЛПОНП (ЛОНП), Содержат 5 – 7% белка, остальные липиды (ТГ + холестерин). ЛПОНП транспортируют эндогенные триглицериды, которые синтезировались в печени, к жировой ткани. В крови ЛПОНП, обогащаясь холестерином превращаются в ЛНП.

Аполипопротеиды представлены апо В,С,Е.

  1. Липопротеиды низкой плотности (ЛПНП = ЛНП) – содержат 10 – 15% белка, 50% холестерина. Основная транспортная форма холестерина и холестеридов. Образуется в плазме крови и обеспечивает перенос холестерина к периферическим тканям. ЛНП – апо-В

  2. Липопротеиды высокой плотности (ЛПВП = ЛВП). 50% белка, 50% распределены между липидами. Уносят избыток холестерина от тканей к печени. Образуются в крови. ЛВП – апо-Д.

Гиперлипопротеинемии:

Тип 1: до хуя ТАГ; много ХМ

Тип 2: до хуя холестерина; много ЛНП, атерогенный

Тип 3: до хуя холестерина, много ТАГ; много ЛОНП и ЛНП, атерогенный

Тип 4: много ТАГ; много ЛОНП

Тип 5: много холестерина, до хуя ТАГ; много ЛОНП

Билет 51

Нарушение липидного обмена возникает при диабете чаще вторич- но, в результате первичных изменений в обмене углеводов. При декомпенсированном диабете часто повышается содержание в плазме СЖК, триглицеридов и холестерина. Распространенность гипер- гликемии при ИЗСД может достигать 50% (Chase P.H. et all, 1976). Увеличение концентрации СЖК является следствием их усиленного вы- свобождения из жировых депо, т.к. скорость образования новых жирных кислот у больных диабетом снижена. Таким образом, при диабете увели- чен приток СЖК из жировых депо в печень и другие ткани. Усиление ли- полиза происходит в результате выпадения нормального тормозного вли- яния инсулина на гормончувствительную липозу в жировой ткани. Кроме того снижение утилизации глюкозы приводит к уменьшению содержания глицерин-3-фосфата, необходимого для реэстерификации жирных кислот в самой жировой клетке. Механизм гиперглицеридемии при диабете более сложен. В норме богатые триглицеридами липопротеины попадают в плазму либо в виде хиломикронов, образующихся из жира, содержащегося в пище, либо в ви- де липопротеинов очень низкой плотности (ЛПОИП), синтезируемых в пе- чени и кишечнике. Высвобождение жирных кислот из триглициридов обо- их видов и их поглощение жировой тканью зависят от липопротеиновой липазы, содержащейся в эндотелии капилляров и активизирующейся ин- сулином. При не леченном или недостаточно компенсированном диабете снижение активности липопротеиновой липазы обусловливает повыше-ние уровня триглицеридов в плазме, что влияет на содержание хиломик- ронов, ЛПОНП или чаще обоих кланов липопротеинов. В повышении син- теза триглицеридов может играть роль и увеличенная доставка жирных кислот в печень, поскольку в этом органе образование эфиров между жир- ными кислотами и глицерином при диабете не нарушается. В результате у больного декомпенсированным диабетом, несмотря на практически пол- ное прекращение синтеза жирных кислот, может увеличиваться перегру- женная жирами печень и повышаться уровень триглицеридов в крови

Билет 39

Экзогенные жиры

липаза слюныpH=6,8..7,2

липаза желудка(pH=1,5..2,

поэтому малоэффективна,

срабатывает т-ко у грудных детей

в щелочной среде на молоко)

липазы тонкого кишечника

pH=7,8 +NaHCO3+желчные к-ты

{НЭЖК+глицерин+-ацилглицериды+непереваренные ТАГ}+желчные к-ты

НЭЖК+альбумин и глицерин в крови

ХМ в лимфе

ХМ в лёгких

Остатки ХМ, НЭЖК+альбумин, глицерин в крови

Липопротеидлипаза крови

ТАГ –> ЛОНП

( Печень, синтез эндогенных ТАГ)

ЛОНП в крови

Билет 40

АТФ АМФ+PPi

ЖК Ацил-КоА (ацил-КоА-синтаза) – активация

Цитозоль Межмембранное пространство Матрикс митохондрии

Ацил-КоА Ацилкарнитин КоА-SH

КоА-SHКарнитин Ацил-КоА

Карнитин-ацилтрансфераза (перенос через митохондриальную мембрану)

-окисление

R-CH2-CH2-CH2-C(O)SKoA

ФАД

Ацил-КоА-дегидрогеназа

ФАДН2

R-CH2-CH=CH-C(O)SkoA

H2O

Енолил-КоА-гидратаза

R-CH2-CH(OH)-CH-C(O)SkoA

НАД

3-гидроксиацилдегидрогеназа

НАДНН

R-CH2-C(O)-CH2-C(O)SkoA

КоА-SH

тиолаза

CH3C(O)SKoA

R1-CH2-C(O)SKoA

Если ЖК с нечётным кол-вом атомов углерода, то в конце образуется пропионил-КоА, превращающийся впоследствии в сукцинил-коа.:

CO2

CH3CH2C(O)SKoA HOOC-CH(CH3)-C(O)SKoA HOOC-CH2-CH2-C(O)SKoA

мутаза

B7

B12

АТФ АДФ

Связь с цитратным циклом: образование ацетил-коа при каждом цикле окисления, образование сукцинил-коа при окислении кислот с нечётным числом атомов углерода.

Билет 41

Митохондрии

Цитоплазма

Ацетил-КоА+ЩУК

цитрат

ЩУК+Ацетил-КоА

цитрат

CO2+АТФ АДФ+Pi

CH3C(O)SKoA НООС-СН2-СОSКоА

Ацетил-коа-карбоксилаза(В7)

Пальмитиновая кислота служит предшественником всех жирных кислот. Удлинение углеродной цепи происходит за счет дополнительного присоединения ацетил – КоА или малонил – КоА.

Синтез ненасыщенных жирных кислот

Большинство непредельных жирных кислот образуются путем дегидрирования предельных кислот. Линолевая кислота не синтезируется в организме и должна поступать с пищей.

Наиболее интенсивно синтез жирных кислот происходит в печени, жировой ткани, молочных железах.

Для синтеза жирных кислот необходим НАДФ Н2, который образуется в пентозном цикле.

При выраженном дефиците инсулина нарушается не только накопление энергетического материала в состоянии сытости, но происходит и черезмерная мобилизация эндогенных его запасов в состоянии голода(например, гипегликемия, гипераминоацидемия, гиперлипоацидемия натощак).В большинстве случаев тяжелой формы диабета (диабетический кетоацидоз) наблюдается черезмерная продукция глюкозы, а также выраженное ускорение катаболизма( липолиза, протеолиза).

156

Соседние файлы в предмете Биохимия