Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фармакопея 12 - 1 часть.doc
Скачиваний:
362
Добавлен:
31.05.2015
Размер:
4.12 Mб
Скачать

12.5. Спектроскопия ядерного магнитного резонанса

(ОФС 42-0046-07)

Вещества, ядра атомов которых имеют магнитные моменты, в постоянном магнитном поле поглощают энергию электромагнитных волн (радиочастотный диапазон) при определенном соотношении между величинами постоянного магнитного поля и частотой переменного поля (ядерный магнитный резонанс, ЯМР). Частота ню0 = омега0/2пи, при которой выполняется условие резонанса омега0 = гамма x B0 (гамма - постоянная, носит название "гиромагнитное отношение") называется резонансной частотой.

Магнитные моменты имеют изотопы ядер элементов с нечетным атомным весом (1H, 13C, 15N, 31P, 19F). Не имеют магнитных моментов ядра атомов с четным зарядом и четным атомным весом (12C, 16O).

Спектр ЯМР может быть получен двумя способами: или при непрерывном облучении образца слабым электромагнитным полем с изменяющейся частотой, в результате чего получается непосредственно спектр ЯМР (спектроскопия с непрерывным облучением), или при воздействии на образец короткого радиочастотного импульса с последующим Фурье-преобразованием отклика, представляющего собой сигнал свободной индукции, в спектр (импульсная спектроскопия).

В молекулах положение энергетических уровней, переходы между которыми

образуют спектр ЯМР, определяется величиной взаимодействия магнитных

моментов ядер с постоянным магнитным полем B и с магнитными моментами

лок

других ядер через посредство электронов молекулы (спин-спиновое

взаимодействие).

Электроны атомов уменьшают величину внешнего магнитного поля B0 в месте

нахождения ядра: B = B0 x (1 - сигма), сигма > 0, константа

лок

экранирования - безразмерная величина. Разница в резонансных частотах

сигналов, равная разнице в константах экранирования ядер, называется

химическим сдвигом сигналов (обозначается символом дельта, измеряется в

миллионных долях, м.д.). Спин-спиновое взаимодействие, характеризуемое

константой спин-спинового взаимодействия (обозначается символом J,

измеряется в герцах), приводит к образованию мультиплетов. Значения дельта

и J не зависят от величины постоянного магнитного поля. Количество

компонент в мультиплетах определяется спином ядра и количеством

взаимодействующих ядер.

Диапазон химических сдвигов сигналов ядер водорода не превосходит 20 м.д. Диапазон химических сдвигов сигналов других ядер измеряется сотнями м.д.

Ширина сигналов ЯМР (разница между частотами на полувысоте сигнала) веществ в растворах определяется временем поперечной релаксации T2, характеризующим время установления равновесия в системе спинов, а также неоднородностью магнитного поля. Определяемая этими величинами ширина сигналов ядер со спином 1/2 обычно не превосходит 1 Гц. Уширение сигналов происходит в результате обменных процессов или присутствием в молекуле ядер со спином большим 1/2.

Интенсивность сигнала ЯМР в спектре определяется избытком количества

ядер на нижнем энергетическом уровне. Отношение количества ядер N- и N+

соответственно на верхнем и нижнем энергетических уровнях определяется

фактором Больцмана: N-/N+ = exp(-мю B0/IkT), где: k - постоянная Больцмана,

n

мю - магнитный момент ядра, T - абсолютная температура, I - спин ядра (при

n

этом (мю B0/I << kT). Очень небольшая разница в энергиях между возбужденным

n

и основным состоянием ядер является основной причиной сравнительно низкой

чувствительности метода ЯМР. Уменьшение интенсивности сигналов также

связано со сравнительно большим временем нахождения системы ядер в

возбужденном состоянии и большим временем релаксации (постоянная,

характеризующая время релаксации обозначается символом T1).

Из ядер с естественным содержанием изотопов наиболее интенсивные сигналы дают ядра водорода. Частота, на которой выполняются условия резонанса для ядер водорода, называется рабочей частотой ЯМР спектрометра. Спектроскопия ЯМР на ядрах водорода и углерода 13C (естественное содержание 1,1%) наиболее часто используется в исследовании органических лекарственных веществ.

Широкополосные импульсные ЯМР-спектрометры позволяют получать спектры практически от всех элементов периодической системы.

Прибор. ЯМР-спектрометр для спектроскопии с непрерывным облучением состоит из магнита, генератора изменяющейся частоты, датчика, генератора радиочастоты и приемника, а также электронного интегратора и самопишущего потенциометра. Импульсные спектрометры, кроме того, имеют генератор импульсов и компьютер для преобразования интерферограммы отклика в спектр.

Рабочая частота спектрометра не должна быть меньше 60 МГц.

Если в частной фармакопейной статье не оговорено, то необходимо соблюдать следующие условия:

1) Разрешение должно быть 0,5 Гц или менее.

2) Амплитуда боковых сигналов, появляющихся при вращении образца, не должна превышать 2% от основного сигнала.

3) При количественных измерениях с использованием интегралов сигналов ни одно из пяти измерений не должно превосходить 2,5% от среднего значения.

4) Разрешение и отношение сигнал/шум следует измерять, используя соответствующие команды в пакете стандартных программ.

Метод. Растворенное вещество должно быть подписано и отфильтровано; раствор должен быть прозрачным. Перед регистрацией спектра фаза сигнала должна быть отрегулирована по возможности на поглощение.

Для растворов в органических растворителях химический сдвиг в спектрах 1H и 13C измеряется относительно сигнала тетраметилсилана (ТМС), положение которого принято за 0 м.д. Отсчет химических сдвигов ведется в сторону слабого поля (влево) от сигнала тетраметилсилана (дельта - шкала химических сдвигов). Для водных растворов в качестве эталона в спектрах ЯМР 1H используется 2,2-диметил-2-силапентан-5-сульфонат натрия (ДСС), химический сдвиг протонов метильной группы которого равен 0,015 м.д. Для спектров 13C водных растворов в качестве эталона используют диоксан (ДО), химический сдвиг которого равен 67,4 м.д.

В качестве растворителей используют легкоподвижные жидкости, в которых для уменьшения интенсивности сигналов растворителей атомы водорода заменены атомами дейтерия. При описании спектров необходимо указывать растворитель, в котором растворено вещество, и его концентрацию.

Химические сдвиги (м.д.) сигналов остаточных протонов растворителей имеют следующие значения: хлороформ - 7,26; бензол - 7,16; вода - 4,7; метанол - 3,35 и 4,8; диметилсульфоксид - 2,50; ацетон - 2,05; положение сигнала воды и протонов гидроксильных групп спиртов зависит от pH среды и температуры.

Для того чтобы избежать уширения сигналов при использовании смешанных растворителей, перед получением спектров необходимо выждать время для гомогенизации смеси растворителей, которое может составлять часы.

Для спектроскопии с непрерывным облучением амплитуда переменной частоты не должна быть большой, чтобы избежать насыщения сигнала. Наиболее интенсивный сигнал должен занимать почти всю ширину бланка. Кривая интеграла записывается поверх сигналов спектра.

В импульсных спектрометрах устанавливают следующие параметры: ширина спектра, время регистрации сигнала, длительность радиочастотного импульса, количество точек для Фурье-преобразования (спектральное разрешение) и количество накоплений сигнала свободной индукции.

Имеется ряд методик получения сигналов ЯМЕ, которые могут быть использованы при решении аналитических задач. В основе каждой из них используется определенная последовательность импульсов. Методики принято обозначать несколькими заглавными буквами латинского алфавита. Например, используемая часто методика COSY является сокращением словосочетания correlation spectroscopy. Обычные (одномерные) спектры получают воздействием на вещество одним радиочастотным импульсом, при завершении которого проводится считывание сигнала (свободная индукция) от ядер образца с последующим преобразованием сигнала свободной индукции в спектр (Фурье-преобразование).

Для слабых сигналов цикл возбуждение - считывание с накоплением сигнала повторяется многократно, чем достигается необходимое для анализа отношение сигнал/шум. Для количественных измерений цикл возбуждение - считывание повторяется через интервал времени, превышающим время релаксации T1 в несколько раз. Для измерения времени T1 следует использовать программу в пакете стандартных программ, прилагаемых к ЯМР-спектрометрам.

Наряду с одномерными в аналитических целях используются двумерные корреляционные спектры, получаемые методиками COSY (для ядер одного вида), HETCOR (для разных ядер) и др. В двумерных спектрах взаимодействие между ядрами проявляется в виде сигналов (перенос когерентности), называемых кросс-пиками. Положение кросс-пиков определяется значениями химических сдвигов двух взаимодействующих ядер.

Двумерные спектры предпочтительно использовать для определения состава сложных смесей и экстрактов, т.к. вероятность наложения сигналов (кросс-пиков) в двумерных спектрах существенно ниже, чем вероятность наложения сигналов в одномерных спектрах.

Для быстрого получения спектров гетероядер (13C, 15N и др.) применяются методики (HSQC, HMBC), которые позволяют получать на ядрах 1H спектры других ядер, используя механизмы гетероядерного взаимодействия.

Методика DOSY позволяет получать спектры индивидуальных соединений (спектральное разделение) в смеси без их физического разделения. Методика основана на различии в скоростях диффузии различных молекул.

Области применения. Многообразие структурной и аналитической информации, содержащейся в спектрах ЯМР, позволяет использовать метод ЯМР для установления подлинности и количественных определений.

1. Установление подлинности вещества. В спектрах ЯМР практически исключается совпадение даже нескольких сигналов от разных веществ. При заявлении спектра на подлинность желательно ограничиваться по возможности меньшим количеством сигналов. При описании спектров необходимо приводить значения химических сдвигов и мультиплетность сигналов, заявленных на подлинность. Следует указывать рабочую частоту спектрометра, т.к. от нее зависит вид спектра. По этой же причине не использовать формулировку "...такой же вид, как и на приведенном (в НД) спектре".

Для установления подлинности смеси веществ (экстрактов) эффективна двумерная ЯМР-спектроскопия. При описании двумерных спектров (фрагментов спектра), заявленных на подлинность, следует приводить значения кросс-пиков.

2. Определение количества посторонних примесей. При получении спектров ЯМР, как правило, легко достигается значение отношения сигнал/шум более 100, что позволяет использовать этот метод для определения в субстанции примеси в количествах, измеряемых процентами и долями процента.

3. Определение количества остаточных растворителей. Все растворители, содержащие атомы водорода и углерода, дают характерные сигналы в спектрах 1H и 13C ЯМР. Чувствительность метода ЯМР к сигналам растворителя весьма высокая.

4. Количественное определение относительного или абсолютного содержания лекарственного вещества (примеси). Содержание вещества (X%) определяется методом внутреннего стандарта, в качестве которого выбирается вещество, сигналы которого находятся вблизи сигналов анализируемого вещества, не перекрываясь с ними. Интенсивности сигналов анализируемого вещества и стандарта не должны существенно различаться. При выборе вещества-стандарта следует отдавать предпочтение не гигроскопичному, не образующему кристаллосольватов веществу.

К испытуемому образцу добавляют вещество-стандарт, проводят измерение площадей сигналов анализируемого вещества и вещества-стандарта. Вычисляют процентное содержание анализируемого вещества в испытуемом образце в пересчете на абсолютно сухое вещество (X%) по формуле:

X% = 100 x (S' /S' ) x (M x m /M x m ) x (100/(100 - W)),

масс a ст a ст ст a

где:

S' - приведенное значение интегральной интенсивности сигнала,

равное измеренной интегральной интенсивности, деленной на количество

протонов в структурном фрагменте (для CH2 - измеренная площадь,

деленная на 2, для CH3 - деленная на 3 и т.д.);

M - молекулярная масса анализируемого вещества;

a

M - молекулярная масса стандарта;

ст

m - навеска испытуемого образца;

a

m - навеска вещества-стандарта;

ст

W - содержание влаги, в процентах.

В качестве веществ-стандартов можно использовать следующие вещества: малеиновая кислота (2H; 6,60 м.д., M = 116,07), бензилбензоат (2H; 5,30 м.д., M = 212,25), малоновая кислота (2H; 3,30 м.д., M = 104,03), сукцинимид (4H; 2,77 м.д., M = 99,09), ацетанилид (3H; 2,12 м.д., M = 135,16), трет-бутанол (9H; 1,30 м.д., M = 74,12).

При использовании в качестве стандартов веществ, молекулярная масса которых имеет небольшую величину, интервал времени между повторяющимися циклами импульсных последовательностей должен превосходить в несколько раз время релаксации T1 веществ-стандартов.

Мольная (X ) и весовая (X ) доля компонента i в смеси n веществ

моль масс

определяется по формулам:

S' M x S'

i X i i

X = ------------ i, масс = -----------------

i, моль j = n j = n S'

SUM S' SUM M x j

j = 1 j j = 1 j

X (%) = X x 100 и X (%) = X x 100.

i, моль моль i, масс масс