Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фармакопея 12 - 1 часть.doc
Скачиваний:
357
Добавлен:
31.05.2015
Размер:
4.12 Mб
Скачать

12.3. Атомно-эмиссионная и атомно-абсорбционная

СПЕКТРОМЕТРИЯ (ОФС 42-0044-07)

Атомная спектрометрия - эмиссионная и абсорбционная - применяется для определения содержания элемента в испытуемом образце посредством измерения интенсивности одной из эмиссионных линий атомного пара (атомно-эмиссионная спектрометрия) или поглощения излучения атомным паром (атомно-абсорбционная спектрометрия) определяемого элемента путем измерения интенсивности эмиссии (испускания) или абсорбции (поглощения) света при определенной длине волны атомного пара элемента, генерированного из вещества, например, при введении раствора вещества в пламя. Определение проводят при длине волны, соответствующей выбранной эмиссионной или абсорбционной линии.

Точность обоих методов атомной спектрометрии, в зависимости от концентрации вещества, составляет 1-4%, чувствительность определяется свойствами аналитической линии, составом пробы, классом аппаратуры и может достигать 0,001 мкг/мл.

АТОМНО-ЭМИССИОННАЯ ПЛАМЕННАЯ СПЕКТРОМЕТРИЯ (АЭС)

Принцип метода. Анализируемый раствор распыляется в виде аэрозоля в пламя горелки, работающей на горючем газе. Под действием температуры пламени происходит ряд сложных физико-химических процессов: испарение растворителя из капель аэрозоля, испарение твердых частиц, диссоциация молекул, возбуждение атомов и возникновение характеристического излучения атомов. Излучение определяемого элемента отделяется от постороннего с помощью светофильтра или монохроматора, попадает на фотоэлемент и вызывает фототок, который измеряется. Количественное определение элемента методом эмиссионной спектрометрии основано на функциональной зависимости интенсивности спектральной линии (I) от концентрации элемента в растворе (c). Прямопропорциональная зависимость между I и c имеет место лишь в определенной для данного элемента области концентраций. Линейную зависимость I от c может нарушать самопоглощение, ионизация, образование газообразных или трудно диссоциирующих в пламени соединений.

Прибор. Главными составными частями атомно-эмиссионного спектрометра являются: генератор атомного пара определяемого элемента (пламя, плазма, дуга и др.), монохроматор и детектор.

Если генератором является пламя, в качестве растворителя для приготовления испытуемого и стандартного растворов рекомендуется использовать воду. Могут использоваться и органические растворители, если они не влияют на стабильность пламени.

АТОМНО-АБСОРБЦИОННАЯ СПЕКТРОМЕТРИЯ (ААС)

Принцип метода. Резонансное излучение от лампы с полым катодом проходит через пламя, в которое распыляется анализируемый раствор пробы. Излучение попадает на входную щель монохроматора, установленного таким образом, что из спектра выделяется только резонансная линия определяемого элемента, интенсивность которой измеряется фотоэлектрическим способом. Измеряют уменьшение интенсивности резонансной линии вследствие поглощения ее атомами определяемого элемента, принимая интенсивность неослабленной линии за 100%. Величина поглощения резонансного излучения пропорциональна числу атомов, находящихся в поглощающем слое.

Прибор. Главными составными частями прибора являются: источник излучения, атомный генератор определяемого элемента (пламя, печь и др.), монохроматор и детектор - для считывания сигнала из нагревательной камеры.

Для каждого определяемого элемента должен быть выбран специфический источник, излучающий спектральную линию, которая должна быть абсорбирована. Таким источником излучения обычно является полая катодная лампа, катод которой испускает излучение при возбуждении. Поскольку излучение, абсорбируемое испытуемым элементом, обычно той же длины волны, что и его линия эмиссии, в полой катодной лампе используется тот элемент, который определяется.

Прибор снабжен аспиратором для введения испытуемого образца в пламя, создаваемое газовыми смесями.

Число возбужденных атомов увеличивается с ростом температуры, которая зависит в основном от теплотворной способности создающего пламя газа (табл. 12.3.1).

Таблица 12.3.1

Температура наиболее часто используемых

газовых смесей

Состав газовой смеси

Температура, град. C

Светильный газ + воздух

1840

Ацетилен + воздух

2250

Ацетилен + кислород

3050

Водород + кислород

2680

Ацетилен + закись азота

2955

Способ введения образца зависит от типа используемого генератора. Если генератором атомного пара является пламя, в качестве растворителя для приготовления испытуемого и стандартного растворов рекомендуется использовать воду. Могут использоваться и органические растворители, если они не влияют на стабильность пламени. При использовании печи может быть также использована техника ввода твердых проб.

В атомно-абсорбционной спектрометрии должна учитываться природа растворителя и концентрация твердых частиц. Идеальным считается растворитель с минимальными помехами в процессах поглощения или эмиссии, при использовании которого в пламени образуются нейтральные атомы. Если имеются значительные различия между поверхностным натяжением или вязкостью испытуемого раствора и стандартного раствора, то эти растворы всасываются и атомизируются с различной скоростью, что обуславливает существенное различие в генерированных сигналах. Концентрация кислоты в растворах также влияет на процессы абсорбции. Таким образом, растворители, используемые для приготовления испытуемого и стандартного растворов в методе ААС, должны быть одними и теми же или максимально похожими и должны образовывать растворы, которые легко всасываются через трубку форсунки аспиратора.

Присутствие в растворе частиц нерастворенного твердого вещества может вызвать помехи при проведении анализа, поэтому общее содержание нерастворимых твердых частиц в растворах должно быть менее 2%.

Атомный пар может быть получен также вне спектрометра, например, методом "холодного пара" для определения ртути или гидридным методом. При определении ртути атомы генерируются при химическом восстановлении, и атомный пар вносится потоком инертного газа в абсорбционную ячейку, расположенную на оптическом пути прибора. В гидридном методе получают гидрид определяемого элемента, который либо смешивается с газом, питающим горелку, либо вносится инертным газом в нагретую абсорбционную ячейку, где он диссоциирует на атомы.

Методика. Прибор выводят на режим в соответствии с инструкцией по эксплуатации прибора и устанавливают требуемую длину волны. В генератор атомного пара вводят холостой раствор и настраивают регистрирующее устройство на нулевое значение в случае атомно-эмиссионного спектрометра и на максимальное светопропускание в случае атомно-абсорбционной спектрометрии. Вводят стандартный раствор определяемого элемента с наибольшей концентрацией и подбирают чувствительность для получения подходящего значения регистрируемого сигнала.

Испытуемый раствор готовят, как указано в частной фармакопейной статье.

Определения проводят путем сравнения со стандартными растворами известной концентрации определяемого элемента одним из двух методов: методом калибровочной кривой или методом стандартных добавок.

Каждый раствор вводят в генератор прибора не менее трех раз и записывают установившееся показание. Каждый раз промывают прибор холостым раствором и проверяют, чтобы показание прибора возвращалось к первоначальному значению для холостого раствора.

В случае использования печи в качестве генератора атомного пара между измерениями ее отжигают.

Метод калибровочной кривой. Готовят не менее трех стандартных растворов определяемого элемента таким образом, чтобы ожидаемое значение концентрации испытуемого раствора находилось внутри диапазона концентраций стандартных растворов. Все реагенты, используемые при приготовлении испытуемого раствора, прибавляют к стандартным растворам и холостому раствору в таких же концентрациях.

Строят калибровочную кривую зависимости среднего значения результата измерения (I), полученного для стандартных растворов, от концентрации (c) и определяют концентрацию элемента в испытуемом растворе по калибровочной кривой.

Метод стандартных добавок. Равные объемы испытуемого раствора помещают не менее, чем в три мерные колбы одинаковой вместимости. Во все колбы, кроме одной, прибавляют пропорционально увеличивающиеся объемы стандартного раствора, содержащего известную концентрацию определяемого элемента (стандартные добавки), и доводят объемы растворов используемым растворителем до метки. При этом значение регистрируемого сигнала растворов со стандартными добавками должно находиться в линейной области калибровочной кривой.

Рассчитывают параметры линейного уравнения прямолинейной зависимости среднего значения результата измерения от концентрации раствора методом наименьших квадратов и вычисляют концентрацию определяемого элемента в испытуемом растворе.

Расчет концентрации может быть произведен графическим методом. Для этого строят график зависимости среднего значения результата измерения от добавленного количества определяемого элемента. Экстраполируют линию, соединяющую эти точки на графике, до пересечения с осью абсцисс. Расстояние от начала координат до полученной точки пересечения дает концентрацию определяемого элемента в испытуемом растворе.

При использовании техники ввода твердых проб условия проведения анализа должны быть указаны в частной фармакопейной статье.

При использовании АЭС и ААС для определения концентрации элемента в анализируемых образцах наряду с приведенными выше методами (калибровочной кривой и стандартных добавок) могут быть использованы метод сравнения и метод ограничивающих растворов или другие валидированные методы.

Реактивы и эталонные растворы. Вода должна быть деионизированной на ионообменных смолах, продистиллированной непосредственно перед употреблением и должна соответствовать требованиям, предъявляемым к воде очищенной.

Ниже приведены растворы солей, катионы которых обозначены названиями элементов, наиболее часто нормируемых в фармацевтическом анализе.

Кальций. 1,001 г кальция карбоната, высушенного до постоянной массы при температуре 105 град. C, растворяют в 25 мл 1 М раствора хлористоводородной кислоты и доводят объем раствора водой до 1000,0 мл. Раствор содержит 400 мкг ионов Ca в 1 мл.

Срок годности раствора - 1 мес., хранение при комнатной температуре.

Калий. 1,1440 г калия хлорида, высушенного до постоянной массы при температуре 130 град. C, растворяют в небольшом количестве воды и доводят объем раствора водой до 1000,0 мл. Раствор содержит 600 мкг ионов К в 1 мл.

Срок годности раствора - 2 мес., хранение при комнатной температуре.

Натрий. 0,5084 г натрия хлорида, высушенного до постоянной массы при температуре 130 град. C, растворяют в небольшом количестве воды и доводят объем раствора водой до 1000,0 мл. Раствор содержит 200 мкг ионов Na в 1 мл.

Срок годности раствора 2 мес., хранение при комнатной температуре.

Цинк. 2,5 г гранулированного цинка растворяют в 20 мл 5 М раствора хлористоводородной кислоты и доводят объем раствора водой до 500,0 мл. Раствор содержит 5 мг ионов Zn в 1 мл.

Срок годности раствора - 2 мес., хранение при комнатной температуре.

Свинец. 0,1600 г свинца нитрата растворяют в 5 мл 32% раствора азотной кислоты и доводят объем раствора водой до 1000,0 мл. Раствор содержит 100 мкг ионов Pb в 1 мл.

Срок годности раствора 1 мес., хранение при комнатной температуре.

Медь. 1,000 г меди электролитической растворяют в небольшом объеме 50% раствора азотной кислоты и доводят объем раствора 1% азотной кислотой до 1000,0 мл. Раствор содержит 1 мг ионов Cu в 1 мл.

Срок годности раствора - 1 мес., хранение при комнатной температуре.

Допускается использование других реактивов и эталонных растворов для спектрального анализа, аттестованных компетентным уполномоченным органом.

Эталонные, а также приготовленные на их основе растворы сравнения хранят в посуде, позволяющей сохранять концентрацию этих растворов неизменной (например, в посуде из кварца, тефлона, чистого полиэтилена и т.п.). Чашки и тигли для озоления проб должны быть изготовлены из кварца.