Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие ХИМИЯ 2010.docx
Скачиваний:
110
Добавлен:
28.05.2015
Размер:
1.83 Mб
Скачать

3.2. Ионная связь

При полном смещении межъядерной электронной плотности к атому с большей электроотрицательностью длина диполя становится равной длине связи (ℓ=α), и атомы превращаются в положительно и отрицательно заряженные ионы, между которыми действуют силы электростатистического притяжения. Такую связь называют ионной. Степень полярности или ионности связи i определяется отношением ℓ/α, крайние значения которого 0 и1 соответствуют чисто ковалентной и чисто ионной связям. В остальных случаях эта величина имеет промежуточные значения, например, для молекулы НСl : α= 0,128 нм и ℓ = 0,0225 нм, откуда i = ℓ/α = 0,0225/0,1280 = 0,18 или точнее 0,20 (при учете влияния НР атома Сl). Таким образом, ионность связи Н-Сl составляет 20%, а эффективные заряды атомов δ +0,2 и -0,2 заряда электрона.

Чем больше разность электроотрицательностей ΔЭО для данной пары атомов, тем больше длина диполя и величина эффективных зарядов, а следовательно, тем больше и ионность связи:

Cоединения

NaF

ZiF

NaCl

HF

HI

ΔЭО

3,1

3,0

2,1

1,9

0,3

Ионность , %

95

92

75

45

5

Ковалентность,%

5

8

25

55

95

Полного, т.е. 100%-ного, смещения электронной плотности на атом с большей ЭО не происходит даже в наиболее ионных соединениях, которыми являются бинарные соединения щелочных металлов с галогенами. Это объясняется как волновыми свойствами электронов, так и влиянием зарядов образовавшихся ионов на электронные оболочки друг друга, т.е. их взаимной поляризацией. Принято считать связь ионной, если ΔЭ0 > 1,9. Значения μ ионных молекул лежат в пределах 1,33∙10-30 Кл∙м.

Отрицательное сродство атомов ко второму электрону делает невозможным существование простых многозарядных ионов (О2- , N3- и т.д). Однако реально существуют многозарядные сложные ионы (SO42- , PO43- и др.). Это объясняется делокализацией их зарядов, в результате которой эффективный заряд каждого атома, входящего в состав иона, не превышает заряда электрона, равного -1.

Ионная связь, в отличие от ковалентной, характеризуется :

  1. ненаправленностью, так как сферическое поле вокруг ионов во всех направлениях равноценно;

  2. ненасыщаемостью, поскольку при взаимодействии ионов не происходит полной компенсации их силовых полей;

  3. координационными числами в ионных соединениях, которые определяются не электронной структурой атомов, а соотношением радиусов взаимодействующих ионов. Так, отношение

Это значение лежит в пределах 0,41 – 0,73, что определяет октаэдрическую координацию ионов, которая характеризует кристаллическую решетку хлорида натрия.

3.3. Металлическая связь

Существенные сведения относительно природы химической связи в металлах модно получить на основании двух характерных особенностей по сравнению с ковалентными и ионными соединениями. Металлы, во-первых, отличаются от других веществ высокой электропроводностью и теплопроводностью, во-вторых, в обычных условиях являются кристаллическими веществами (за исключением ртути), структуры которых характеризуются высокими координационными числами.

Из первого характерного свойства металлов следует, что по крайней мере часть электронов может передвигаться по всему объема куска металла. С другой стороны, из кристаллической структуры металлов следует, что их атомы не связаны друг с другом локализованными двухэлектронными связями, ибо числа валентных электронов атома оказывается недостаточно для образования подобных связей со всеми его соседями. Например, литий кристаллизуется в кубической объемноцентрированной решетке, и каждый его атом имеет в кристалле по 8 ближайших соседей.

Для образования двухэлектронных связей в подобной структуре атом лития должен был бы предоставить 8 электронов, что конечно, невозможно, так как он имеет лишь один валентный электрон [2].

Таким образом, в отличие от ковалентных и ионных соединений, в металлах небольшое число электронов одновременно связывает большое число ядерных центров, а сами электроны могут перемещаться в металле. Иначе говоря, в металлах имеет место сильно нелокализованная химическая связь. Согласно одной из теорий металл можно рассматривать как плотно упакованную структуру из катионов, связанных друг с другом коллективизированными электронами (электронным газом).