Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие ХИМИЯ 2010.docx
Скачиваний:
110
Добавлен:
28.05.2015
Размер:
1.83 Mб
Скачать

5.4. Ионное произведение воды. Водородный показатель

Вода – очень слабый амфотерный электролит: Н20 Н+ + ОН‾ при 24°С=1,6∙10‾9

Подставляя в уравнение Кдисс2O]=[Н+]∙[0Н-] концентрацию воды, которая вычисляется из соотношения [Н2O] =1000/18 = 55,5 моль/л, получаем выражение для константы воды: 1,8∙10-16∙55,5=+]∙[0Н-]=1∙10-14=КН2О,

где КН2О=1∙10-14 - ионное произведение воды; КН2О зависит от температуры, с повышением температуры КН2О увеличивается, т.е. диссоциация Н20 происходит с поглощением тепла.

КН2О – постоянна не только для Н2О, но и для разбавленных водных растворов любых веществ [Н+]=[0Н-]=√КН2О=10-7моль/л.

Пользуясь КН2О, можно выразить любую реакцию среды через концентрацию ионов водорода. Нейтральный раствор [Н+]=[0Н-]=10-7моль/л. Кислый раствор [Н+]>10-7моль/л. Щелочной раствор [Н+]<10-7моль/л.

Количественное обозначение реакции среды можно упростить, если ввести водородный показатель pH и гидроксильный показатель pОH, тогда

pH= -lg[Н+]; pОH= -lg[0Н-]. Нейтральная среда pH=7; pОH=7. Кислая средаpH<7; pОH>7. Щелочная среда pH> 7; pОH<7.

5.5 Равновесие в гетерогенных системах, произведение растворимости

Примером гетерогенной системы может служить насыщенный раствор труднорастворимого соединения, находящегося в равновесии с твердой фазой. К труднорастворимым веществам относятся многие электролиты - соли, основания (чаще всего амфотерные), некоторые кислоты (H2SiO3; β-H2SnO3 и др.). Так, труднорастворимы галогениды серебра, сульфаты бария и стронция, карбонаты бария и кальция. Сульфиды металлов, за исключением сульфидов натрия и аммония, характеризуются очень малой растворимостью. Вследствие малой растворимости раствор труднорастворимого электролита становится насыщенным при очень малых концентрациях растворенного вещества. Между твердой фазой и раствором электролита устанавливается равновесие, например, AgClAg++CI-

твердая насыщенный

фаза раствор

В единицу времени в насыщенный раствор переходит столько ионов, сколько их вновь переходит в осадок. Это состояние равновесия характеризуется величиной константы равновесия

Концентрация твердой фазы – величина постоянная, т.е. [AgCl]тв= const, следовательно, [Ag+][Cl-] также величина постоянная, называемая произведением растворимости (ПР): ПРAgCI=[Ag+]∙[CI-].

Таким образом, в насыщенном растворе труднорастворимого соединения произведение концентраций его ионов при данной температуре есть величина постоянная. При написании ПР необходимо учитывать стехиометрические коэффициенты в уравнении диссоциации соединения, например: ПРAg2CrO4=[Ag+]2[CrO42-]; ПРAg3PO4=[Ag+]3[PO43-];: ПРAg2S3=[Ag+]2[S2-]3.

В общем виде для системы КmAn↔mkn+ nAn, ПР выразится следующим образом: ПРKmAn=[Kn+]m[Am-]n.

Из понятия ПР вытекает условие образования и растворения осадков. Если [Kn+]m[Am-]n= ПРKmAn , система находится в равновесии.

Если [Kn+]m [Am-]n>ПРKmAn или [Kn+]m [Am-]n<ПРKmAn, система стремится к новому состоянии равновесия, приводящему в первом случав к выпадению осадка, во втором - к его растворению. Эти процессы будут происходить до тех пор, пока не будут достигнуты ионные концентрации, соответствующие величине произведения растворимости. В таблице 4 приведены примеры некоторых труднорастворимых веществ.

Таблица 4

Произведение растворимости некоторых труднорастворимых веществ

Вещество

ПР

Вещество

ПР

CuS

6,3∙10-36

α- ZnS

1,6∙10-24

Cu2S

25∙10-48

β - ZnS

2,5∙10-22

HgS

3∙10-52

ZnSe

1∙10-21

Физико-химические свойства растворов электролитов.

Примеры решения задач.

Пример 1. Вычисление кажущейся степени диссоциации сильного электролита.

Вычислить степень диссоциации 0,2 М раствора муравьиной кислоты HCOOH, если Кд=2,1∙10-4.

Решение: По закону разбавления α=√(Кдм) = √(2,1∙10-4/0,2)=3,24∙10-2 или 3,24%.

Пример 2. Вычисление степени диссоциации электролита по осмотическому давлению его раствора.

Рассчитайте кажущуюся степень электролитической диссоциации ZiCI в 0,1М раствора соли, если раствор изотоничен с 0,19 М раствором сахара С12Н22О11 при 0ºС.

Решение: Моль сахара равен 342 г.

Росм=(mRT)/(M∙V)= (342∙0,19∙8,3144∙273)/ (342∙10-3) = 4,31∙105 Па.

М(ZiCI)=42 г∙моль-1. По осмотическому давлению определяем изотонический коэффициент раствора ZiCI

i=(Pосм∙V)/(nRT)=(4,31∙103∙10-3∙42,39)/(4,239∙8,3144∙273)= 1,19.

Кажущаяся степень диссоциации в 0,1 М ZiCI равна

α=(i-1)/(n-1)=(1,9-1)/(2-1)=0,9 или 90 %.

Пример 3. Вычисление степени диссоциации электролита по пони­жению давления пара растворителя над раствором.

Давление пара водного раствора NaNO3(ω=0 ,08) равно 2268,8 Па при 20 °С. Давление паров воды при этой температуре равно 2337,8 Па. Найдите кажущуюся степень диссоциации нитрата нат­рия в этом растворе.

Решение. С помощью первого закона Рауля для электролитов вы­числяем значение изотонического коэффициента для NaNO3:

i = (P0-P)∙(N+n)/P0∙n; M(NaNO3) = 85,00 г∙моль-1; n=8:85=0,094 моль; М(Н2О)=18,02 г∙моль-1;

i = (2337,8-2268,9) ∙ (0,094+5,911)/(2337,8∙0,094)=(0,69∙5,199)/219,75 = 1,63.

Кажущаяся степень диссоциации NaNO3 в этом растворе равна

α=(1,63-1)/(2-1) = 0,63 (или 63 %).

Пример 4. Вычисление изотонического коэффициента по повышению температуры кипения раствора.

Раствор, содержащий 8 г NaOH в 1000 г Н2О, кипит при 100,184°С. Определите изотонический коэффициент (для воды Е =-0,516°С).

Решение. Второй закон Рауля для растворов электролитов выражается уравнением ∆t0кип=ι∙ (Кэ∙100∙m)/(mр-ля∙М(р.в)). Тогда

ι = (∆t0кип∙mр-ля*М(р.в))/(Кэ∙m∙1000)= (0,184∙1000∙40)/(0,516∙1000∙8)=1,78.

Ионное произведение воды. Водородный показатель

Электростатическое взаимодействие полярных молекул воды приводит к их самоионизации: 2Н2О↔Н3О++ОН- или в упрощенной форме Н2О↔Н++ОН-;

Константа диссоциации воды весьма мала при 25°С

Принимая поэтому концентрацию воды [Н2О] величиной практически постоянной, можно записать К∙ [Н2О]=[Н+] ∙ [ОН-] = 1,8∙10-162О]. Но концентрация воды равна 1000/18=55,56 моль∙л-1, отсюда получаем

+]∙[ОН-] = =1,8∙10-16∙55,56=1∙10-14в.

Произведение концентраций ионов водорода и ионов гидроксида называется ионным произведением воды Кв. Ионное произведение воды есть величина постоянная при постоянной температуре. В чистой воде и нейтральных растворах[Н+]=[ОН-]=√10-14=10-7 моль∙л-1.

Математически более удобной характеристикой среды является водородный показатель рН, равный десятичному логарифму концентрации водородных ионов, взятому с обратным знаком: рН = -lg[Н+].

Тогда рН различных растворов будут иметь следующие значения:

кислый рН <7;

нейтральный рН = 7;

щелочной рН >7.

Аналогично, отрицательный десятичный логарифм концентрации гидроксо-ионов называется гидроксильным показателем и обозначает­ся рОН. Следовательно,

рН + рОН = 14.

Пример 1. Вычисление водородного показателя раствора.

Вычислите водородный показатель рН раствора гидроксида натрия, содержащегося в растворе в концентрации 4,2∙10-3 моль∙л-1 .

Решение. Концентрация ОН- ионов в растворе NaOH равна

[0Н-]=4,2∙10-3моль∙л -1. Исходя из ионного произведения во­ды Кв, находим концентрацию ионов водорода: [Н+]=КВ/[ОН-]=10-14/4,2∙10-3=0,24∙10-11. Водородный показатель раствора NaOH равен: рН= -lg([Н+])=-lg(0,24∙10-11)=11,62.

Пример 2. Определение концентрации ионов Н+ и ОН- в растворах сильных кислот и оснований.

Определите концентрацию ионов водорода и рН в 0,01 М раствора соляной кислоты.

Решение. Соляная кислота – сильный электролит, в растворе пол­ностью диссоциирует на ионы: НС1 Н+ + С1-. Концентрация ионов [Н+] численно равна концентрации НС1. Из 0,01 моль НС1 об­разуется 0,01 моль иона Н+. Отсюда [Н+] =0,01∙10-2; рН=-lg(1∙10-2)=2.

Пример 3. Вычисление рН сильного электролита с учетом его коэффициента активности.

Найдите водородный показатель раствора НNO3, если его моляр­ная концентрация равна 0,178 моль∙л-1.

Решение. При значительной концентрации сильного электролита его активная концентрация существенно отличается от истинной. Поэтому в таких случаях нужно вводить поправку на активность электролита. Определяем ионную силу раствора НNO3: J= 1/2∙ (0,176∙I2 + 0,178∙I2) = 0,356/2 = 0,178.

Далее по вычисленной ионной силе находим коэффициент активнос­ти иона [Н+]= f(Н+)=0.838. Тогда активность ионов [Н+], а (Н+) =0,83∙0,178=0,148. Водородный показатель раствора НNO3 равен: рН = -lg а(Н+) = -lg 0,148=0,83.

Пример 4. Определение концентрации ионов Н+ и ОН- в растворах слабых кислот и оснований.

Концентрации [Н+] и [ОН-] ионов в растворах слабой кислоты и слабого основания могут быть вычислены, если известны их констан­ты диссоциации. В общем виде формула для вычисления концентрации [Н+] в растворе слабой кислоты:

Концентрация ионов [Н+]и [ОН-] в растворе слабого основания может быть вычислена по формуле: ; [Н+]= Кв/[ОН-];

.

Определите концентрацию[Н+], [ОН-], рН, рОН, в 0,0М раствора муравьиной кислоты, если Кд(HCOOH)=2,1∙10-4

Решение:

+]=√2,1∙10-4∙3∙10-2 = √6,3∙10-6= 2,5∙10-3 моль∙л-1;

рН= -lg 2,5∙10-3=3-lg 2,5 = 3-0,4= 2,6;

[ОН-]= Кв/[Н+]= 10-14/(2,5∙10-3)=4∙10-12 моль∙л-1;

рОН= 14-рН=14-2,6 = 11,4.