
- •Список литературы:
- •Введение
- •Основные понятия и определения
- •Классический подход
- •Системный подход
- •Способы создания моделей
- •Классификация моделей
- •Классификация методов моделирования
- •Глава 2 Теоретические основы моделирования
- •1.1 Условное моделирование
- •1.2 Аналогия.
- •2. Аналогичное моделирование
- •3. Элементы теории подобия
- •3.1 Понятие подобия
- •3.2 Подобие физических процессов (объектов)
- •3.3 Виды подобия.
- •Теория размерности Основные положения теории размерности
- •Критерии подобия
- •3.4 Определение критериев подобия
- •Определение критериев подобия при известном математическом описании
- •Определение критериев подобия с использованием теории размерности (при неизвестном математическом описании)
- •3.5 Первая теорема подобия и ее применение при определении критериев подобия.
- •3.5.1 Определение критериев подобия по уравнениям исследуемых процессов
- •3.5.2 Определение критериев подобия процессов, описываемых уравнениями, содержащими только однородные функции
- •3.5.3 Определение критериев подобия процессов, описываемых уравнениями, содержащими неоднородные функции
- •Преобразование критериев подобия
- •Методика определения критериев подобия способом интегральных аналогов
- •3.6 Вторая теорема подобия и ее применение при определении критериев подобия (-теорема)
- •Методика определения критериев подобия на основе анализа размерностей
- •Этапы определения критериев подобия
- •3.7 Третья теорема подобия и ее применение при установлении условий подобия.
- •3.7.1 Формулировка третьей теоремы, отвечающая реальным задачам
- •3.7.2 Автомодельность
- •3.7.3. Масштабные уравнения
- •Общий вид масштабных уравнений для любой системы по методу размерности
- •3.8 Дополнительные положения о подобии
- •Первое дополнительное положение о подобии сложных систем
- •3.8.1.1 Следствия первого дополнительного положения
- •Второе дополнительное положение о подобии систем с нелинейными или переменными параметрами
- •Третье дополнительное положение о подобии анизотропных или неоднородных систем
- •Четвертое дополнительное положение о подобии физических
- •Этапы процесса подобного моделирования
- •Классификация видов подобия и моделирования
- •В качестве модели заменим
- •Методы идентификации
- •Структурная идентификация
- •Р ис. 20 Общая схема идентификации модели Текущие данные
- •Выбор класса модели
- •Выбор критерия согласия
- •Параметрическая идентификация
- •Схемы параметрической идентификации
- •Идентификация линейной регрессионной модели р ис. 21 Схема одномерной системы
- •Линейный регрессионный анализ для многомерных систем
- •Идентификация динамических систем
- •Идентификация нелинейных систем
- •Метод прямого поиска
- •Аппроксимация нелинейности
- •Модель Гаммерштейна
- •Метод Виннера
- •Двухэтапная процедура
- •Планирование эксперимента
- •Активный эксперимент
- •Построение d – плана
- •Оценка адекватности модели
- •Практическая реализация моделирования
- •Масштабирование переменных для авм
- •Операционный усилитель как основной элемент авм
- •Линейные операционные элементы
- •Пропорциональный (масштабирующий) усилитель
- •Звено перемены знака
- •Суммирующий усилитель
- •Интегрирующее звено.
- •Интегрально-пропорциональный усилитель
- •Дифференциальное звено
- •Пример аналогового моделирования двигателя постоянного тока
- •Способы математического описания систем автоматизации электроприводов.
- •Моделирование нелинейных функций
- •Работа операционного усилителя в режиме компаратора
- •Добротность аналоговой вычислительной машины
- •Реализация аналоговых моделей
- •Методы составления схем набора
- •Общая методика моделирования на авм
- •Цифровое моделирование.
- •Приведение дифференциальных уравнений к виду, удобному для цифрового моделирования
- •Структурирование при цифровом моделировании.
- •Выбор вспомогательных переменных для передаточных функций, содержащих оператор в числителе
- •Гибридное моделирование
- •Система matlab
- •Краткая характеристика системы
- •Система matlab (Вводный курс) Ввод простых матриц
- •Программа моделирования динамических систем.
- •Требования к системе.
- •1. Быстрый старт.
- •2. Начальные сведения.
- •2.1 Создание простой модели этап 1
- •2.2 Этап 2
- •3. Анализ моделей.
- •3.1 Способы использования.
- •3.2 Моделирование.
- •3.2.1 Моделирование с помощью меню.
- •3.2.2 Моделирование с помощью командной строки.
- •3.3 Просмотр траекторий выходных сигналов.
- •3.5 Алгебраические циклы
- •3.6 Алгоритмы моделирования
- •4. Управление величиной шага
- •4.1 Минимальный размер шага
- •4.2 Максимальный размер шага
- •4.3 Методы с фиксированным шагом
- •4.4 Эффективный размер шага
- •5. Системы дискретного времени.
- •5.1 Дискретные блоки
- •5.2 Образцовое время
- •5.3 Полностью дискретные системы
- •5.4 Смешанные системы (непрерывные и дискретные)
- •6. Линеаризация
- •Имитационное моделирование.
- •1. Сущность имитационного моделирования.
- •2. Цифровое моделирование больших систем.
- •2.1 Характерные особенности больших систем.
- •2.2 Аналитические модели
- •2.3 Имитационные модели.
- •2.3.1 Влияние случайных факторов.
- •2.4 Пример имитационной модели.
- •2.5 Условия использования имитационных моделей.
- •2.6 Недостатки имитационных моделей.
- •3. Технология моделирования сложных систем. Технологические этапы создания и использования имитационных моделей.
2. Аналогичное моделирование
Аналогичное моделирование - замещение оригинала аналогичной моделью, обладающей сходством с оригиналом, достаточным для экстраполяции ее свойств и отношений в свойства и отношения оригинала на основании умозаключений по аналогии. Аналогичное моделирование используется обычно при сравнительно слабой изученности оригинала, когда имеющиеся сведения об его свойствах носят только качественный характер.
Вывод: при удачном выборе модели аналогичное моделирование позволяет получить весьма интересные и важные результаты. К сожалению, общая методика аналогичного моделирования невозможна, и требуется поиск модели. Во многих случаях целесообразно использовать аналогичные формальные модели, основанные на механических, электрических, акустических аналогиях.
3. Элементы теории подобия
3.1 Понятие подобия
Особое место среди математических моделей занимают подобные. Если при аналогии двух объектов распространение свойств одного объекта на другой носит характер предположения и нуждается в проверке, то при подобии знание свойств одного объекта значит знание свойств другого объекта.
Подобие - это полная математическая аналогия при наличии пропорциональности между сходственными переменными, неизменно сохраняющаяся при всех возможных значениях этих переменных, удовлетворяющих сходственным уравнениям.
Впервые понятие «подобие» появилось в геометрии.
Геометрическое подобие – определяют подобность геометрических фигур по сходственным характеристикам. Многоугольник с определенным количеством сторон n, подобен другому многоугольнику с таким же количеством сторон n, если соответствующие углы многоугольников равны, а соответствующие стороны пропорциональны. Определение геометрического подобия многоугольников, на примере треугольников, состоит в следующем:
треугольники подобны, если у них сходственные стороны пропорциональны, а сходственные углы равны и, т. е. выполняются следующие равенства:
Рис.5 Подобие треугольников
, (1)
где mL и m - масштабные коэффициенты (масштабы) величин сторон и углов, характеризующие пропорциональность сходственных параметров.
(Оговорка: если mL и m называются масштабными коэффициентами, то величины обратные им , т.е. 1/mL и 1/m будут называться масштабами и обозначаться, соответственно, ML и M или наоборот, или вообще не делается различия между терминами «масштаб» и «масштабный коэффициент»).
На практике при геометрическом подобии используются не характеристики длин сторон многоугольника, а их координаты.
Если ввести систему прямоугольных координат X, Y, то при геометрическом подобии все координаты xiA, yiA первого многоугольника пропорциональны соответствующим координатам xiB, yiB второго многоугольника, т.е. выполняются соотношения
xiA, / xiB =mx; yiA / yiB = my; mx = my,
где xi и yi координаты любой точки, находящейся на отрезках прямых, определяющих контуры соответствующего многоугольника; mx и my - масштабы.
Данный вид подобия может существовать и в пространстве большей размерности: трех - и более мерном.
Дальнейшее развитие понятия подобие является - аффинное подобие, при котором допускается неравенство масштабов по отдельным координатным осям.
Рис.6 Превращение параллелепипеда в куб.
При аффинном подобии для сходственных точек в трехмерном координатном пространстве будут справедливы следующие соотношения:
xiA / xiB = mx; yiA / yiB = my; ziA / ziB = mz; mx my mz.
При этом требуется введения специальных преобразующих функций, осуществляющих взаимосвязь между координатами моделей и объекта, часто - нелинейных.
Пример: установить условия аффинного подобия на рис. 4, отрезки линий e1 - l1 являются не линейно сходственными линиями e2 - l2, точки e1, f1, g1, h1, i1 соответствуют точкам e2, f2, g2, h2, i2.
Рис.7 Нелинейное преобразование
Уравнения для контуров e1 - i1 и e2 - i2 имеет вид:
x1 + y1 = 6; x22 + y22 = 24.
Вводятся масштабные коэффициенты Fx = x1 / X1 и Fy = y1 / Y1, вид которых пока неизвестен, для уравнения первого контура можно записать:
X1 Fx + Y1 Fy = 6,
где X1 и Y1 преобразованные в область B значения x1 и y1 из области A. После тождественных преобразований уравнение выглядит:
[(2X1 / x1) Fx]2 + [(2Y1 / y1) Fy]2 = 24,
таким образом Fx = x1 / 2; Fy = y1 / 2 и, следовательно :
x2 = 2 x1 и y2 = 2 y1.
В приведенном примере функции преобразования Fx и Fy имеют одинаковый вид, но нелинейный характер.
Следующий
пример: даны
две сходственные функции:
,
если масштабыmy
= y1
/ y2:
mx
= x1
/x2,
соответственно равны 2 и 4, то функции
подобны.
Рис.8 Подобные функции (пример)
В этом примере переменные имеют различные масштабные коэффициенты по координатным осям.
Пример.
Имеются два генератора переменного
тока. Их описывает функция зависимости
напряжения от времени:
и
.
Выражения для масштабов имеют видmu
= u1
/ u2,
mt
= t1
/ t2.
Время, входящее в одну формулу и время,
входящее в другую формулу имеют вполне
определенный физический смысл, так как
t1
и t2
такие различные значения одной и то же
величины t,
при которых фиксируются значения
различных зависимых переменных u1(t)
и u2(t).
Физическое и временное подобие имеет место при mu = 10 и mt = 2. Масштаб mu показывает отношение амплитуд напряжений u1 и u2, масштаб mt - отношение периодов T1 = 4c и T2 = 2c.
Рис.9 Подобие генераторов (пример)
В общем случае временного подобия безразмерный масштаб времени представляет отношение сходственных временных интервалов, которым соответствует неизменное отношение значений или приращений подобных временных функций. Этими параметрами могут быть периоды колебаний (как в примере), постоянные времени, длительности переходных процессов, временные задержки и т.д.
Если, например, имеются две подобные САУ, то, установив время переходного процесса одной из них 1 и зная временной масштаб mt, можно найти время переходного процесса другой системы: 2 = 1 / mt.