Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(1-й сем) / ТГВ-Л№10.ppt
Скачиваний:
57
Добавлен:
22.05.2015
Размер:
569.34 Кб
Скачать

Кубанский государственный технологический университет

Институт информационных технологий и безопасности

Кафедра компьютерных технологий и информационной безопасности

Учебная дисциплина

Электротехника и электроника

Лекция № 10

Классический метод анализа переходных процессов

Учебные вопросы:

1. Причины возникновения переходных процессов. Законы коммутации.

2. Переходные процессы в цепи постоянного тока с одним реактивным элементом.

3. Разряд емкости на RLC - цепь.

Литература:

1. Зевеке Г.В., Ионкин А.В., Нетушил А.В.,Страков С.В. Основы теории цепей: Учебник для вузов, - М.: Энергоатомиздат, 1999 г, с. 234 – 249

2. Бакалов В.П., Игнатов А.Н., Крук Б.И. Основы теории электрических цепей и электроники: Учебник для вузов, - М.: Радио и связь, 1999 г, с. 103 – 117.

3. Касаткин А.С., Немцов М.В. Электротехника: Учебник для вузов, - М.: Высшая школа, 2003 г, с. 37 –83.

1. Причины возникновения переходных процессов. Законы коммутации.

При анализе процессов в ЭЦ приходится иметь дело с

двумя режимами их работы: установившимся (стационарном) и переходном (динамическом).

Физической причиной возникновения переходных процессов в цепях является наличие реактивных элементов, в которых накапливается энергия магнитного и электрического поля.

При различного рода воздействиях (подключении к цепи или отключении источников энергии, изменении параметров цепи) изменяется энергетический режим работы цепи, причем эти изменения не могут осуществляться мгновенно в силу непрерывности изменения энергии электрического и магнитного полей, что и приводит к возникновению переходных процессов.

Ключ замкнут R = 0

Кл Ключ разомкнут R =

Переходные процессы в цепи описываются однородными (если цепь не содержит источников энергии) или неоднородными (если цепь содержит

источник энергии) линейными дифференциальными уравнениями (ЛДУ).

Методы расчета переходных процессов

Классический

Операторный

Частотный

Сводится к решению

Сводится к решению

Используются

алгебраических операторных

частотные методы

НЛДУ (ОЛДУ)

 

уравнений цепи

анализа ЭЦ

Классический метод обладает наглядностью и удобен для анализа и расчета простых цепей, операторный – упрощает расчет сложных цепей.

Методика расчета переходных процессов

классическим методом

1. Составить ЛДУ n – го порядка (в общем случае – неоднородное ЛДУ) относительно независимой переменной (в качестве которой может быть выбран ток iL или напряжение uC), описывающей

состояние цепи после коммутации.

a

d n y

a

d n 1 y

... a

dy

a

y f (t)

n dtn

n 1 dtn

 

 

 

 

 

 

1

1 dt

0

 

где аn – постоянные коэффициенты, f(t) – внешнее воздействие (ЭДС, ток), n – порядок ЛДУ (равен числу разнородных реактивных элементов ЭЦ).

2. Составить общее решение неоднородного ЛДУ в виде суммы общего решения однородного ЛДУ и частного решения неоднородного ЛДУ.

y(t) yСВ (t) yУСТ (t)

yСВ(t) свободная составляющая искомой функции, т.е.

общее решение однородного ЛДУ, полученного при f(t) = 0

(содержит постоянные интегрирования).

yУСТ (t) – установившаяся составляющая, т.е. частное

решение, представляющее собой вынужденный режим,

задаваемый в цепи внешним источником.

3. В общем решении yСВ(t) следует найти постоянные интегрирования из начальных условий, т.е. условий цепи

в начальный момент времени после ее коммутации на

основании законов коммутации.

t = 0+

Законы коммутации утверждают, что ток в индуктивности

и напряжение на емкости не могут изменяться скачком.

Первый закон коммутации связан с непрерывностью изменения магнитного поля катушки индуктивности WL = Li2/2 и гласит: в начальный момент

времени t = 0+ непосредственно после коммутации ток в

индуктивности имеет то же значение, что и в момент времени

t = 0- , до коммутации и с этого момента плавно изменяется

iL (0 ) iL (0) iL (0 )

Второй закон коммутации связан с непрерывностью изменения электрического

поля емкости WC = Cu2/2 и гласит: в начальный момент времени

непосредственно после коммутации напряжение на емкости

имеет то же значение, что и в момент времени t = 0-

до

коммутации и с

этого момента плавно изменяется

 

 

 

 

 

 

 

uC (0 ) uC (0) uC (0 )

 

 

 

 

uL (t) L

di

 

Производные могут

iC (t) C

du

 

dt

 

изменяться скачком

dt

 

 

 

 

2. Переходные процессы в цепи постоянного тока с одним

реактивным элементом

2.1. Подключение источника постоянной ЭДС к RL - цепи

 

 

 

 

 

 

 

Кл

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i(t)

 

 

 

 

 

 

 

 

В момент времени t = 0 коммутация и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

начало переходного процесса.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В качестве независимой переменной

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uR(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u (t)

 

 

 

 

 

 

 

L

 

 

выберем ток

i(t) = i

(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

di

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uR (t) uL (t) E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iR L dt

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i,u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u (t)

 

Свободная составляющая – общее решение

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

diСВ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pt

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

Ri

0; iСВ А e , p

 

 

 

 

 

 

 

 

E/R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Частное решение – постоянный ток iУ =Е/R

 

 

 

 

 

E/e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uL(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Общее решение – неоднородного ЛДУ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

i(t) iСВ (t) iУ (t) A e

 

E

 

 

А

Е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

di

 

 

E 1

 

t

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i(t)

 

 

(1 e

 

 

 

 

 

 

 

 

)

 

 

(1

e )

 

 

uL (t) L

 

L

e E e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uR (t) E(1

e

 

 

 

)

 

 

 

R

 

 

 

 

 

 

 

R

 

 

dt

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

, c

Чем больше постоянная времени , тем медленнее

 

R

 

затухает переходный процесс и наоборот.

Постоянная времени служит практической мерой продолжительности переходного процесса, так как теоретически переходный процесс длится бесконечно долго и позволяет сравнивать различные цепи в отношении времени стационарного (установившегося) режима.

На практике считают переходный процесс законченным при t = 3 , при этом напряжение или ток достигают 95% от своего установившегося значения. Графически может быть определена как интервал времени

на оси t от 0 до точки пересечения касательной к uL , при этом напряжение на uL уменьшится в e (е = 2,7 ) раз.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d n y

 

d n 1 y

 

dy

 

 

 

an

 

 

 

 

 

 

 

 

 

di

 

 

 

 

 

 

L dt

Ri E

 

 

an dtn

an 1

dtn 1

... a1

 

a0 y f (t)

 

 

a0

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вывод: В цепях постоянного тока при нулевых начальных условиях в

момент времени t = 0+ индуктивность ведет себя как бесконечно

большое сопротивление (аналог – разрыва цепи), а при t = как бесконечно малое сопротивление (короткое замыкание цепи).

 

 

 

2.2. Короткое замыкание RL - цепи

 

 

 

 

 

 

 

R0

 

R

i(t)

К

моменту

 

коммутации

в

 

цепи

 

была

 

 

запасена энергия магнитного поля W =Li2/2.

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

Ненулевые

 

 

 

E

Кл

uR(t) uL(t)

L

i(0) R0

R

начальные условия

 

 

 

 

 

 

 

Однородное ЛДУ

 

L di Ri 0

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

i(t) iСВ (t) A e

Постоянную интегрирования А находим из

 

 

начальных условий и закона коммутации.

 

Решение ОЛДУ

 

i(0 ) i(0)

 

E

 

i(0 ) A; A

R0

E

 

 

 

 

 

 

R0 R

 

 

 

 

 

R

 

E R

u,i

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

R0 R

 

 

 

 

 

 

 

iL (t)

 

 

e

 

 

 

 

 

Ток в цепи после коммутации

E

 

; L

 

E

 

uR

 

 

 

 

 

 

 

 

 

R R

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

R0 R

i(t)

 

 

 

 

 

Ток в катушке индуктивности после

 

0

 

 

 

 

 

t

коммутации поддерживается за счет

 

 

uL(t)

 

 

 

 

запасенной магнитной энергии

 

 

 

 

 

 

 

 

 

Вывод: При ненулевых

 

 

 

 

 

di

 

 

E

t

 

 

 

 

E R

 

uL (t) L

 

 

 

 

начальных условиях

 

 

 

 

dt

 

R0 R

e

 

индуктивность ведет себя как

 

R0 R

 

 

 

 

 

 

 

источник тока

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Подключение источника постоянной ЭДС к RC - цепи

 

В качестве переменной выберем напряжение на конденсаторе u(t) = uC(t)

 

 

 

Кл

 

 

 

R

 

 

 

i(t

 

 

 

 

 

В момент времени t = 0 коммутация

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и начало переходного процесса.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

duC (t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

i(t) iC (t) C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uR(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

uC(t)

 

 

 

 

 

 

C

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uR (t) uС (t) E

 

 

 

 

 

RC

duC

uC E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Свободная составляющая

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i,u

 

 

 

 

 

 

 

 

uC(t)

 

 

 

 

 

 

– общее решение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

du

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RC

СВ

u0; uСВ А ept , p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RC

E/R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Частное решение – постоянный ток

uУ = Е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uR(t)

 

 

А Е

 

Общее решение – неоднородного ЛДУ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E/e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uC (t) uСВ (t) uУ (t) A e

 

t

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iC (t) C duC E e

t

 

 

uR (t) E e

 

t

 

 

 

u (t) E E e RC E(1 e

 

 

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RC, c

 

Чем больше постоянная времени , тем медленнее

 

нарастает напряжение на емкости и спадает ток.

 

 

 

Вывод:

В цепях постоянного тока при нулевых начальных условиях в

момент времени t = 0+ емкость ведет себя как бесконечно малое

сопротивление ( аналог - короткое замыкание цепи), а при t = как

бесконечно большое сопротивление (аналог – разрыва цепи).

R0

 

2.4

Короткое замыкание RС - цепи

 

Кл

R

iЗАР(t)

 

uC (0) E

Ненулевые начальные

 

 

 

 

 

 

+

 

 

условия

E

 

u (t)

С

Однородное

RC

duC (t)

uC (t) 0

 

R uС(t)

 

ЛДУ

dt

 

 

iРАЗ(t)

 

 

 

 

 

 

 

Постоянную интегрирования А находим из

Решение ОЛДУ

 

 

начальных условий и закона коммутации.

uC (t) uСВ (t) A e t

uC (0 ) uC (0) E uC (0 ) A; A E

Законы изменения напряжений и тока в цепи после коммутации

 

 

 

t

 

i (t) С duC (t)

 

E

e

t

 

 

 

 

t

uС (t) Е e

 

 

 

 

 

 

uR (t) Еe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С

dt

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в папке (1-й сем)