Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
138
Добавлен:
09.05.2015
Размер:
727.55 Кб
Скачать

Радиационные и химические аварии. Причины и стадии техногенных катастроф.

АВАРИЙНЫЕ ВЗРЫВЫ.

Взрывом называется необратимая реакция превращения исходной смеси веществ в преимущественно газообразные продукты с выделением в короткий промежуток времени большого количества тепла.

Источником аварийных взрывов являются хранилища и склады взрыво- и пожароопасных веществ (нефтебазы, склады боеприпасов, взрывчатых веществ (ВВ) и др.), а также промышленные предприятия с взрывопожароопасными производствами (нефтегазовой, химической, пищевой, деревообрабатывающей промышленности и т.п.), котельные и др. Особенно подвержены аварийным взрывам рудники и шахты, где взрывается метан и угольная пыль. Возможны взрывы бытового газа в кухнях жилых зданий, вызывающие в ряде случаев обрушения целых секций, взрывы баллонов со сжиженным газом.

ХИМИЧЕСКИЕ АВАРИИ

Химические аварии имеют место при несанкционированном выбросе или выливании аварийных, химически опасных веществ (АХОВ). Под АХОВ, согласно ГОСТ, понимают "опасное химическое вещество, применяемое" в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды в поражающих живой организм концентрациях (токсодозах). Таким образом, средой заражения может быть не только воздух, но и природные воды, грунт и т.п.

Источником аварийной ситуации в этом случае могут быть предприятия нефтегазовой, химической промышленности, а также склады, холодильники и др.

Наибольшая потенциальная опасность на производственных объектах возникает в сооружениях хранения и на наливных станциях; кроме того выливания и выбросы АХОВ часто имеют место на транспортных коммуникациях (в основном, на железных дорогах).

Наиболее типичными причинами химических аварий на производственных площадках являются отказы технологического оборудования и ошибки производственного персонала. В последние годы опасность отказов усиливается из-за изношенности оборудования, коммуникаций и недостатка средств на их обновление. Источниками утечек АХОВ, например, могут быть разрывы трубопровода из-за коррозии, повреждений при ремонте и т.п.

Среди наиболее характерных причин аварийных выбросов (выливаний) на железных дорогах - опрокидывание цистерн с нарушением герметизации; трещины в сварных швах емкостей, разрушение запорной арматуры и неисправности предохранительных устройств и т.п. Риск возникновения аварии и масштаб последствий при транспортировке выше, чем на объекте; например, в 1986...87 годах из 17 зарегистрированных в нашей стране серьезных аварий с АХОВ 12 произошли на железных дорогах. Масштабы перевозок достигают сотен тысяч тонн в год, только жидкий хлор перевозится одновременно сотнями шестидесяти тонных железнодорожных цистерн.

Аварии на промышленных объектах имеют, как правило, ограниченный масштаб, однако приводят как к поражению производственного персонала, в т.ч. с летальным исходом, так и населения в близлежащих районах. Крупнейшая химическая авария произошла на заводе по изго­товлению пестицидов в г. Бхопале (Индия) 2 декабря 1984 г. Этот завод — дочернее предприятие американской фирмы «Юнион Карбайд» — производил пестицид севин (Cl0H7OOCNHCH3). При его производстве использовалось промежуточное ядовитое соеди­нение (полупродукт) — метилизоцианат.

В результате технической неисправности (поломки предохра­нительного клапана) одного из резервуаров, в котором хранился метилизоцианат, его ядовитые пары попали в атмосферу. По оцен­кам, в воздух попало приблизительно 3 т. газа, что привело к гибе­ли более 2500 человек, а общее число пораженных отравляющим веществом, которым была оказана медицинская помощь, достиг­ло 90 000.

По критериям токсичности, объема запасов и характера распространения в атмосфере к наиболее опасным АХОВ относятся: хлор, аммиак, фосген, сернистый ангидрид, цианистый водород, сероуглерод, сероводород, фтористый водород, нитрил акриловой кислоты.

ДЕЙСТВИЕ НАСЕЛЕНИЯ ПРИ АВАРИЯХ С ВРЕДНЫМИ ЯДОВИТЫМИ ВЕЩЕСТВАМИ

Наряду с природными стихийными бедствиями на промышленных предприятиях города могут возникнуть производственные аварии с выбросом вредных веществ: хлора, аммиака, соляной кислоты.

Хлор газ зеленовато-желтого цвета с резким удушающим запахом. Тяжелее воздуха. При испарении и соединении с водяными парами в воздухе стелется над землей в виде тумана зеленовато-белого цвета, может проникнуть в нижние этажи и подвальные помещения зданий. При выходе в атмосферу из неисправных емкостей дымит. Пары сильно раздражают органы дыхания, глаза и кожу.

Аммиак — бесцветный газ с резким удушающим запахом. Легче воздуха, хорошо растворим в воде. При выходе в атмосферу из неисправных емкостей дымит. Опасен при вдыхании. При высоких концентрациях возможен смертельный исход. Пары сильно раздражают органы дыхания, глаза и кожу.

Соляная_ кислота — водный раствор желтого цвета с резким запахом. Пары вызывают раздражение слизистой оболочки глаз, кашель, чувство удушья.

При попадании водного раствора на кожу — ожоги.

Имеющиеся на объектах города вредные ядовитые вещества при выбросе (выливе) их в результате аварийных ситуаций распространяются по направлению ветра и имеют резкий, характерный запах, образуют на местности облако тумана различной окраски.

Простейшим средством защиты от попадания внутрь организма человека этих веществ является ватно-марлевая повязка, смоченная водой, поэтому каждому жителю города необходимо иметь в готовности такую повязку.

При получении сигнала и информации по радио о возникновении опасности заражения или появления в воздухе признаков вредных химических веществ необходимо.

  • закрыть окна и форточки, выключить нагревательные приборы, погасить огонь в печах;

  • надеть ватно-марлевую повязку, смоченную водой (при отсутствии повязки можно использовать ткань, платок, полотенце, меховые или ватные части одежды, смоченные водой);

  • покинуть квартиру;

  • быстро выходить из зоны заражения перпендикулярно (наперерез) направлению ветра на возвышенные, хорошо проветриваемые участки местности,

  • строго выполнять указания милиции и органов ГО,

  • запрещается при нахождении в зоне заражения заходить в подвалы, создавать панику и препятствовать действиям милиции,

  • при появлении признаков отравления пострадавшего вынести (вывести) на свежий воздух, освободить от стесняющей одежды, промыть глаза и рот 2 % раствором соды, при необходимости сделать искусственное дыхание и отправить в меди- после передачи сигнала по радио или громкоговорителями патрульных автомобилей о ликвидации аварий вход в жилье и производственные помещения разрешается после проветривания.

ПОМНИТЕ! Строгое соблюдение правил поведения в зараженной зоне, организованность, спокойствие и решительные действия в экстремальных условиях — залог сохранения здоровья каждого человека.

При выходе из зоны заражения снять верхнюю одежду, промыть глаза и открытые участки тела, прополоскать рот.

РАДИАЦИОННЫЕ АВАРИИ

К радиационной аварии относит непредвиденный случай, обусловленный нарушением технологического процесса, неисправностью оборудования и другими причинами, который создает повышенную радиационную опасность для персонала и населения.

Наиболее серьезными источниками радиационных аварий являются предприятия, вырабатывающие или использующие атомную энергию. К ним относятся исследовательские реакторы, производства искусственных изотопов, атомные электростанции (АЭС) и станции теплоснабжения (ACT), атомные теплоэлектроцентрали (АТЭЦ), а также предприятия металлургии химической промышленности и т.д.

Получение электрической или тепловой энергии является главной областью мирного применения ядерных технологий. В основу такого производства положен так называемый ядерный топливный цикл (ЯТЦ).

Являясь наиболее мощными и сложными, технические системы атомных энергетических производств являются основным источником серьезных радиационных аварий. По данным Международного агентства по атомной энергетике (МАГАТЭ) только в период с 1971 no 1985 г.г. в 14 странах мира на АЭС имели место более 150 аварий различной тяжести, т.е. в среднем около 10 в год. Основными причинами аварий на АЭС являются:

- ошибки в проектах, дефекты - на их долю приходится 30,7% всех аварий;

- износ оборудования, коррозионные процессы - 25,5%;

- ошибки оператора- 17,5%;

- ошибки в эксплуатации - 14,7%;

- прочие причины - 11,6%.

Наиболее серьезной аварией, быстро переросшей в глобальную катастрофу, стала авария на Чернобыльской АЭС (Украина, СССР) 26 апреля 1986г. В результате последовательных ошибок, допущенных операторами ядерного реактора, в нем начал накап­ливаться водяной пар. Он реагировал с находящимся в реакторе горячим цирконием, и образовывался водород. Давление водо­рода в активной зоне реактора нарастало, что привело в конеч­ном итоге к разрушению верхней части реактора, четвертого блока станции, часть здания и кровля машинного зала АЭС. При соприкос­новении с воздухом газообразная смесь взорвалась, и от возник­шего пламени загорелся графитовый замедлитель, который про­должал гореть несколько дней.

В результате взрыва и разрушения защитных и ограждающих конструкций на первой стадии произошел выброс ядерного топлива (на высоту до 1 км), а также высокоактивных обломков конструкций активной зоны, графита, продуктов деления и т.п. На второй стадии (до 1 мая) мощность выброса в виде, главным образом, топливной и графитовой пыли уменьшилась. На третьей стадии (2-6 мая) наблюдалось нарастание мощности выброса, обусловленное непродуманной попыткой засыпать шахту реактора свинцом, материалами на основе бора, песком и глиной без организации теплоотвода. В результате произошел дополнительный разогрев оставшегося содержимого реактора и проплав его опорной плиты; образовавшаяся раскаленная масса проникла в подреакторные помещения. На четвертом этапе (после 6 мая) мощность выброса резко упала и в дальнейшем стабильно уменьшалась.

Радиоактивные вещества, нахо­дящиеся в реакторе, попали в атмосферу и образовали радиоак­тивное облако, размеры которого составляли 30 км в ширину и приблизительно 100 км в длину. Распространившись затем на большое расстояние, облако вызвало радиоактивное заражение местности. Зона существенного загрязнения местности (с уров­нем загрязнения более 5 мр/ч) составила около 3000 км2. Несколь­ко десятков человек погибло в результате аварии. Отмечены так­же многочисленные случаи заболевания лучевой болезнью. Свыше 100000 человек, проживавших в радиусе 30 км от реактора пришлось эвакуировать вскоре после аварии.

В результате аварии образовалось три радиоактивных следа на поверхности земли: северный, западный и южный и стойкое радиоактивное заражение в пределах этих следов на территориях Украины, России, Белоруссии. Повышение радиоактивности было зафиксировано в Финляндии, Норвегии и других северных странах.

Опыт Чернобыля и других аварий на АЭС и предприятиях ЯТЦ также показал, что основными источниками опасных из лучений при серьезных радиационных авариях являются: активная зона разрушенного реактора; газо-аэрозольное облако радиоактивных благородных газов и радиоактивных веществ; выброшенных из реактора; обломки активной зоны, конструкции биологической зашиты самого реактора, машин и механизмов, выброшенные из здания реактора в момент аварии; мелкодисперсные радиоактивные вещества в твердой и жидкой форме, вынесенные из реактора потоком теплого воздуха и равномерно распределенные по поверхности земли, зданий, сооружений, насаждений и других объектов в районе аварии.

Воздействие аварий рассматриваемого типа на окружающую среду сводится помимо взрыва и локальных пожаров к радиоактивному загрязнению, осуществляемому через гидро- и воздушный перенос, диффузию в почву. Радиоактивные загрязнения имеют малую вымываемость атмосферными осадками и паводковыми водами. Торф, чернозем, суглинки и глины являются грунтами, которые особенно хорошо удерживают радиоактивные осадки. До 90% всех осадков сосредотачивается в слое грунта толщиной до 2...3 см.

Последствия радиационных аварий для людей и ущерб, наносимый ими природе, могут быть разделены на следующие категории:

• немедленные смертельные случаи и травмы;

смертельные случаи, травмы и. др., возникающие среди персонала и населения в процессе аварии (до локализации очага аварии и прекращения выброса опасных веществ);

• латентные (продленные) смертельные случаи и заболевания, в т.ч. будущих поколений;

• материальный ущерб от радиоактивного загрязнения, включая вывод земель из пользования на длительный, период, вторичный ущерб от изменения флоры и фауны;

• материальный ущерб от мероприятий по ликвидации по- следствий включая расходы на эвакуацию и новое размещение пострадавшего населения, медицинское обслуживание, дезактивацию и дегазацию, ущерб от использования невосполнимых ресурсов;

• социальный ущерб для общества и его институтов.

Защита от радиационных аварий на предприятиях, использующих ЯТЦ, осуществляется с помощью специальных технических систем и защитных конструкций (оболочек) из железобетона с внутренней металлической облицовкой, заключающих внутри себя активную зону. Толщина стенок такой оболочки достигает 1,5 м. Эти оболочки обеспечивают также биологическую защиту персонала. После аварии в Чернобыле АЭС Чернобыльского типа, не обеспечивающие локализацию внутреннего аварийного воздействия, строительством запрещены.

Расчет оболочек должен обеспечить безопасность реактора при всех гипотетически возможных видах воздействий, включая большинство особых (сейсмика, взрыв, удары и т.п., см. п.п. 3.1, 3.2, 3.4). Авария в Чернобыле выделила также в качестве особого воздействия проплав днища реакторного отделения высокотемпературной топливной массой с последующим уходом ее в грунты с водоносными слоями. Одним из возможных путей решения этой проблемы может быть возведение с помощью специальной техники железобетонных или металлических охлаждаемых ловушек, рассекающих массу и контролирующих охлаждение ее частей.

Защита людей и оборудования на радиоактивно зараженной местности достигается, главным образом, оборудованием обитаемых объектов защитными экранами из противорадиационных материалов (ПРМ). В качестве последних используются вольфрам, свинец в виде листа и дроби, железо.

Защита из ПРМ может быть общей, локальной, индивидуальной и комбинированной. Для общей защиты ПРМ размещается по всем наружным и внутренним поверхностям помещения (обычно для группы людей). Локальная защита реализуется путем размещения ПРМ на направлениях, по которым преимущественно распространяются опасные излучения; примером может быть пол кабины, кресло и подлокотники водителя автомашины, защищенные листами свинца. Индивидуальная защита обеспечивается ношением специальной защитной одежды. Комбинированная защита сочетает в себе все три способа.

Наибольшей проникающей способностью обладают, как известно, гамма- и нейтронное излучения. Поражающее действие проникающей радиации характеризуется энергией, переданной излучением единице массы вещества, или поглощенной дозой. За единицу поглощенной дозы принят 1 Грей - доза излучения, соответствующая энергии 1 Дж, переданной ионизирующим излучением любого вида облучаемому веществу массой 1 кг. Внесистемной единицей поглощенной дозы является рад; 1 рад= 10 Гр.

Для защиты от нейтронного излучения предпочтительно применение водородосодержащих материалов (вода, полиэтилен и т.п.). Однако поглощение нейтронов может сопровождаться испусканием вторичного гамма-излучения; этот эффект может быть существенно снижен введением в материал защиты бора.

Гамма-излучение хорошо ослабляется тяжелыми металлами, например, свинцом.

При работе на радиоактивном следе даже при низких уровнях радиации на объектах должны функционировать системы очистки воздуха, а люди, находящиеся на открытой местности, должны использовать индивидуальные средства защиты органов дыхания.

Одна из особенностей радиоактивного загрязнения заключается в том, что его невозможно обнаружить без помощи специальных дозиметрических приборов, так как радиация не имеет каких-либо внешних признаков, не обладает ни цветом, ни запахом, ни вкусом. Радиоактивные излучения обладают способностью проникать через различные толщи материала и вызывать нарушения некоторых, жизненно важных процессов в организме человека. Человек в момент воздействия радиации не получает телесных повреждений и не испытывает болевых ощущений, однако, в результате облучения у пораженного позже может развиться лучевая болезнь.

Радиационное облучение бывает внешнее и внутреннее. При внешнем облучении источник находится вне живого организма. В этом случае следует быстро покинуть зараженную зону или спрятаться в укрытии. Внешнее облучение значительно поглощается стенам здании и одеждой.

Но радиоактивные вещества могут попасть и внутрь организма — с пылью воздухом, пищей и водой. Происходит внутреннее облучение - это основная угроза для людей оказавшихся в зоне радиоактивного заражения. В организме радиоактивные вещества ведут no-разному. Одни скапливаются в костях, другие – в печени, почках.

Например, радиоактивный йод концентрируется в щитовидной железе, которая вырабатывает гормоны и регулирует жизнедеятельность организма. Обычно в организме содержится очень мало йода. Йод нужен щитовидной железе для нормальной работы, а накопление в ней радиоактивного йода работу железы нарушает. Чтобы избежать подобной опасности, для профилактики в первые часы после аварии необходимо насытить щитовидную железу обычным йодом: тогда она не примет йод радиоактивный. Для насыщения обычным йодом применяются таблетки и порошки йодистого калия. Принимать его следует в течение первого времени ежедневно, по одной таблетке. Если таблеток нет, можно приготовить йодистую смесь: капель 5%-ного раствора йода на стакан воды. Принимать равными частями 4 раза в день.

Максимально ограничьте пребывание на открытой местности, при выходе из помещений используйте средства индивидуальной зашиты;

При нахождении на открытой территории не раздевайтесь, не садитесь на землю, не курите;

Перед входом в помещение обувь вымойте водой или оботрите тряпкой, верхнюю одежду вытряхните и почистите влажной щеткой;

Строго соблюдайте правила личной гигиены;

Принимайте пищу только в закрытых помещениях, руки тщательно мойте, рот полощите очень слабым раствором пищевой соды;

Воду употребляйте только из проверенных источников;

Исключите купание в открытых водоемах до проверки степени их радиоактивного загрязнения;

Не собирайте в лесу ягоды, грибы и цветы. Наблюдение этих рекомендаций поможет избежать заболевания лучевой болезнью.

Причины и стадии техногенных катастроф

Возникновение любой чрезвычайной ситуации, в том числе и техногенной катастрофы, вызывается сочетанием действий объек­тивных и субъективных факторов, создающих причинный ряд со­бытий. Непосредственными причинами техногенных катастроф могут быть внешние по отношению к инженерной системе воз­действия (стихийные бедствия, военно-диверсионные акции и т.д.), условия и обстоятельства, связанные непосредственно с данной системой, в том числе технические неисправности, а также человеческие ошибки. Последним, согласно статистике и мнению специалистов, принадлежит главная роль в возникновении техноген­ных катастроф. По оценке экспертов, человеческие ошибки обус­ловливают 45% экстремальных ситуаций на АЭС, 60% авиакатас­троф и 80% катастроф на море.

Процесс развития чрезвычайных ситуаций (в том числе и техно­генных катастроф) целесообразно разделить на три стадии: зарожде­ния, кульминационную и затухания. Принято считать, что во всех типах экстремальной ситуации рассмотренные стадии присутствуют всегда. В ином случае в соответствии с принятым определением и критериями ситуацию нельзя квалифицировать как чрезвычайную. На первой стадии развития чрезвычайной ситуации складыва­ются предпосылки будущей техногенной катастрофы', накаплива­ются многочисленные технические неисправности; наблюдаются сбои в работе оборудования; персонал, обслуживающий его, до­пускает ошибки; происходят не выходящие за пределы объекта некатастрофические (локальные) аварии, т.е. нарастает техничес­кий риск. Продолжительность первой стадии оценить трудно. Для |«взрывных» чрезвычайных ситуаций (катастрофы в Бхопале и Чер­нобыле) эти стадии могут измеряться сутками или даже месяцами. У «плавных» техногенных катастроф (например, экстремальная ситуация в районе озера Лав в США) продолжительность указан­ной стадии измеряется годами или десятилетиями.

Рассмотрим в качестве примера стадию зарождения катастро­фы, произошедшей в ночь с 3-го на 4 июля 1989 г. в Республике Башкортостан. В эту ночь на участке 1431 км продуктопровода Западная Сибирь — Урал — Поволжье по перекачке легких угле­водородов произошел разрыв трубы диаметром 720 мм с истече­нием сжиженного продукта, которое продолжалось примерно 2,5 ч (вытекло порядка 11 000 т продукта). От места разрыва до желез­нодорожного полотна расстояние составляло 300—500 м. При про­хождении по железнодорожной линии двух поездов, следовав­ших навстречу друг другу, от случайной искры произошел взрыв смеси паров продукта с воздухом, вызвавший крушение поездов В результате техногенной катастрофы 573 человека погибли. 693 были ранены.

Предпосылки зарождения этой катастрофы наблюдались в пе­риод с 1985 по 1989 гг., когда произошло 9 аварийных отказов по различным причинам. Около двух лет не осуществлялись меры элек­трохимической защиты продуктопровода, в результате чего на от­дельных его участках произошла поверхностная коррозия на глуби­ну 3—4 мм, а в отдельных случаях и сквозная. Колесный и гусенич­ный транспорт при переезде через трубопровод наносил ему мно­гократные повреждения. Существовали и другие причины, приведшие к возникновению данной техногенной катастрофы.

Кульминационная стадия техногенной катастрофы начинается с выброса вещества или энергии в окружающую среду (возникновение пожара, взрыва, выброс в атмосферу ядовитых веществ разрушение плотины) и заканчивается перекрытием (ограничением) источника опасности. В случае Чернобыльской аварии продолжительность кульминационной стадии составляла 15 дней (с 26 апреля по 10 мая 1986 г.).

Стадия затухания технологической катастрофы хронологически охватывает период от перекрытия (ограничения) источника опасности — локализации чрезвычайной ситуации до полной ликви­дации ее прямых и косвенных последствий. Продолжительное данной стадии измеряется годами и многими десятилетиями.

Особенно тяжелы и продолжительны медицинские последствия аварии на Чернобыльской АЭС. Первое медицинское по­следствие после этой аварии — острая лучевая болезнь. Из 134 за­болевших в первые 3 месяца после аварии умерли 28 человек тогда как за 40 лет до аварии в бывшем СССР было зарегистрировано около 500 случаев острой лучевой болезни с летальным исходом всего в 43 случаях.

Второе драматическое последствие аварии — резкое увеличе­ние рака щитовидной железы у детей, зарегистрированное в некоторых областях Белоруссии и Украины, а также в Брянской обла­сти России. Максимальное количество больных выявлено в районах наибольшего загрязнения радионуклидами.

В дни аварии в окружающую среду были выброшены радио­нуклиды с общей активностью около 50 млн кюри. В почву попа­ди в основном цезий-137 с периодом полураспада 30 лет, строн-ций-90 — 28, плутоний-239 — 24 065 и плутоний-241 — 14 лет. Изотоп плутоний-241 по активности превышает плутоний-239. Плутоний-241 в результате радиоактивных превращений преоб­разуется в амерций-241 (альфа-излучатель), период полураспада которого составляет 485 лет. Последний изотоп преобразуется в нептуний-239, являющийся альфа-излучателем с периодом полу­распада 2 140 000 лет (практически вечный альфа-излучатель). В результате через 20 лет после Чернобыльской катастрофы (к 2006 г.) количество альфа-излучателей в почве увеличится вдвое. После этого уровень радиации будет повышаться еще в течение 40 лет, оставаясь затем уже постоянным на тысячелетия. При попадании в организм человека или животных указанных выше радиоактив­ных изотопов происходит внутреннее облучение тканей, что по­вышает риск появления и развития злокачественных опухолей. По современным оценкам, за 50 лет количество смертей от онкологи­ческих заболеваний достигнет 15 тыс.

Весьма длительна стадия затухания при катастрофах на хими­ческих предприятиях, что доказывает пример Бхопала, где люди продолжают умирать до сих пор; а также при загрязнении окружа­ющей среды токсичными веществами.

Лекция 3