Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОМиН / Лекции к зачету / Лекция 1.doc
Скачиваний:
232
Добавлен:
27.04.2015
Размер:
2.15 Mб
Скачать

Лекция №1 Введение в индустрию наносистем. Основные понятия и определения.

1.1. История развития нанотехнологий. Основные определения: наносистема, наноматериалы, нанотехнология, нанодиагностика, наносистемотехника, нанонаука, нанотехника, наноинженерия.

Прародителем нанотехнологий можно считать греческого философа Демокрита Абдерского. 2400 лет назад он впервые использовал слово «атом» для описания самой малой частицы вещества. Главным достижением философии Демокрита считается развитие им учения о неделимой частице вещества, обладающей истинным бытием, не разрушающейся и не возникающей (атомистический материализм). Он описал мир как систему атомов в пустоте, отвергая бесконечную делимость материи, постулируя не только бесконечность числа атомов во Вселенной, но и бесконечность их форм. Атомы, согласно этой теории, движутся в пустом пространстве (Великой Пустоте, как говорил Демокрит) хаотично, сталкиваются и вследствие соответствия форм, размеров, положений и порядков либо сцепляются, либо разлетаются. Образовавшиеся соединения держатся вместе и таким образом производят возникновение сложных тел. Само же движение – свойство, естественно присущее атомам. Тела – это комбинации атомов. Разнообразие тел обусловлено как различием слагающих их атомов, так и различием порядка сборки, как из одних и тех же букв слагаются разные слова. Атомы не могут соприкасаться, поскольку все, что не имеет внутри себя пустоты, является неделимым, то есть единым атомом. Следовательно, между двумя атомами всегда есть хотя бы маленькие промежутки пустоты, так что даже в обычных телах есть пустота. Отсюда следует также, что при сближении атомов на очень маленькие расстояния между ними начинают действовать силы отталкивания. Вместе с тем, между атомами возможно и взаимное притяжение по принципу «подобное притягивается подобным». Различные качества тел полностью определяются свойствами атомов и их комбинаций и взаимодействием атомов с нашими органами чувств.

В 1905г. швейцарский физик Альберт Энштейн опубликовал работу, в которой доказал, что размер молекулы сахара составляет примерно 1 нанометр. Энштейн предложил исследование «Новое определение размеров молекул». Рассуждая о связи вязкости жидкости с размерами растворенных молекул сахара и рассматривая их совокупность, ученый вывел математическое выражение, определяющее скорость диффузии. Сопоставив коэффициент диффузии с вязкостью раствора, ученый определил размеры молекул сахара.

В 1931г. немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты. Ими был предложен принцип работы Растрового Электронного Микроскопа (РЭМ), заключающийся в сканировании поверхности образца сфокусированным электронным пучком и анализе отраженных от поверхности частиц и возникающего в результате взаимодействия электронов с веществом рентгеновского излучения. Анализ частиц позволял получать информацию о рельефе поверхности, о фазовом различии и кристаллической структуре приповерхностных слоев. Анализ рентгеновского излучения, возникающего в процессе взаимодействия пучка электронов с образцом, давал возможность качественно и количественно охарактеризовать химический состав приповерхностных слоев.

В 1959г. американский физик, лауреат Нобелевской премии Ричард Филлипс Фейнман впервые опубликовал работу, где оценивались перспективы миниатюризации. Основные положения нанотехнологий были намечены в его легендарной лекции «Там, внизу, еще очень много места», произнесенной им в Калифорнийском Технологическом Институте. В работе Фейнмана впервые была рассмотрена возможность создания веществ (а затем, естественно, отдельных элементов, деталей и целых устройств) совершенно новым способом, а именно, «атомной укладкой», при которой человек манипулирует нужными атомами поштучно, располагая их в требуемом ему порядке. Фейнман научно доказал, что с точки зрения фундаментальных законов физики нет никаких препятствий к тому, чтобы создавать вещи прямо из атомов. Тогда его слова казались фантастикой только лишь по одной причине: еще не существовало технологии, позволяющей оперировать отдельными атомами (то есть опознать атом, взять его и поставить на другое место). Лекция Фейнмана «была столь провидческой, что не доходила до людей, пока до нее не дошла технология».

В 1966г. американский физик Рассел Янг, работавший в Национальном бюро стандартов, придумал пьезодвигатель, применяемый сегодня в сканирующих микроскопах и для позиционирования наноинструментов с точностью до 0,01ангстрем (1нм=10Å).

В 1968г. Альфред Чо и Джон Артур, сотрудники научного подразделения американской компании «Bell», разработали теоретические основы нанообработки поверхностей.

В 1974г. японский физик Норио Танигучи ввел в научный оборот термины «нанотехника» и «нанотехнология», предложив называть так механизмы размером менее 1 микрона и способы их создания.

В 1981г. германские физики Герд Бинниг и Генрих Рорер создали сканирующий туннельный микроскоп – прибор, позволяющий осуществлять наблюдение, изучение и атомное манипулирование в нанообъектах. Через четыре года они получили Нобелевскую премию.

В 1985г. американские физики Роберт Керл, Хэрольд Кротои, Ричард Смолли создали технологию, позволяющую точно измерять предметы диаметром в один нанометр.

В 1986г. создан атомно-силовой микроскоп, позволяющий, в отличие от туннельного микроскопа, осуществлять взаимодействие с любыми материалами, а не только с проводящими.

В 1986г. нанотехнология стала известна широкой публике. Американский футуролог Эрик Дрекслер опубликовал книгу «Машины созидания: приход эры нанотехнологии», в которой предсказал, что нанотехнология в скором времени начнет активно развиваться. Он предложил создавать устройства, названные им «молекулярными машинами», и раскрыл удивительные возможности, связанные с развитием нанотехнологий. Воображаемые устройства Дрекслера по своим размерам были значительно меньше, чем хорошо известные всем биологические клетки.

В 1989г. ученые Дональд Эйглер и Эрхард Швецер из Калифорнийского научного центра компании «IBM» сумели выложить 35 атомами ксенона на кристалле никеля название своей компании.

В 1991г. японский профессор Сумио Лиджима, работавший в компании «NEC», использовал фуллерены для создания углеродных нанотрубок диаметром 0,8 нм.

В 1998г. голландский профессор Технического университета Сиз Деккер создал транзистор на основе нанотрубок, используя их в качестве молекул. Для этого ему пришлось первым в мире измерить электрическую проводимость такой молекулы. Появились технологии создания нанотрубок длиной 300 нм.

В 2000г. Администрация США объявила «Национальную нанотехнологическую инициативу» (National Nanotechnology Initiative). Тогда из федерального бюджета США было выделено $500 млн. В 2002г. сумма ассигнований была увеличена до $604 млн. На 2003 год «Инициатива» запросила $710 млн., а в 2004 году правительство США приняло решение увеличить финансирование научных исследований в этой области до $3,7 млрд. в течение четырех лет. В целом, мировые инвестиции в нано в 2004 году составили около $12 млрд.

В 2000г. немецкий физик Франц Гиссибл разглядел в кремнии субатомные частицы. Его коллега Роберт Магерле предложил технологию нанотомографии – создания трехмерной картины внутреннего строения вещества с разрешением 100нм. Проект финансировала компания «Volkswagen».

В 2001г. Сиз Деккер соединил углеродную нанотрубку с ДНК, получив единый наномеханизм.

В 2003г. профессор Фенг Лью из Университета Юты, используя наработки Франца Гиссибла, с помощью атомного микроскопа построил образы орбит электронов путем анализа их возмущения при движении вокруг ядра.

В 2004г. Администрация США поддержала «Национальную наномедицинскую инициативу» как часть National Nanotechnology Initiative. В России впервые заявили о развитии нанотехнологий как приоритетной области исследований в рамках «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 г.».

В 2004 – 2006гг. Российский исследователь и изобретатель Виктор Иванович Петрик с помощью разработанного им же газофазного метода очистки металлов и разделения изотопов получил наноструктуры ряда металлов: платины, железа, никеля и других.

В 2008г. в России законодательно утверждена «Концепция национальной системы мониторинга исследований и разработок в сфере нанотехнологий».

Стремительное развитие нанотехнологий вызвано еще и потребностями общества в быстрой переработке огромных массивов информации.

Современные кремниевые чипы могут при всевозможных технических ухищрениях уменьшаться еще примерно до 2012 года. Но при ширине дорожки в 40-50 нанометров возрастут квантовомеханические помехи: электроны начнут пробивать переходы в транзисторах за счет туннельного эффекта, что равнозначно короткому замыканию. Выходом могли бы послужить наночипы, в которых вместо кремния используются различные углеродные соединения размером в несколько нанометров. В настоящее время ведутся самые интенсивные разработки в этом направлении.

В основе научно-технического прорыва на наноуровне, форсируемого промышленно развитыми странами, лежит использование новых, ранее не известных свойств и функциональных возможностей материальных систем при переходе к наномасштабам, определяемых особенностями процессов переноса и распределения зарядов, энергии, массы и информации при наноструктурировании.

Обратимся к важнейшему фактору – геометрическому размеру и приставке «нано», входящей в ряд основных, наиболее часто используемых в официальных документах, понятий: нанотехнология, наноматериалы, наносистемы.

Первоначально обратим внимание на исходные смысловые значения наиболее часто употребляемых приставок, идентифицирующих характеристические и геометрические размеры изучаемых объектов:

микро – (от греч. mikros – малый);

нано – (от греч. nannos – карлик).

Применительно к индустрии наносистем границы геометрического фактора в отношении возникновения новых нетрадиционных свойств, не присущих макро- и микросистемам, формально определены от единиц до 100 нм. Однако вполне очевидно, что некоторый характеристический размер, идентифицирующий изучаемый объект по геометрическому параметру (толщина пленки, диаметр кластера или нанотрубки), должен рассматриваться не просто как абсолютная величина, а в отношении к определенным фундаментальным параметрам материалов, имеющим аналогичную метрическую размерность (так называемый размерный эффект). Размерный эффект – зависимость свойств тела от его размера. Этот эффект возникает, если протяженность тела, по крайней мере в одном измерении, становится сравнимой с некоторой критической величиной lk. Для классических размерных эффектов lk – классическая величина, например, диффузионная длина, длина свободного пробега электронов и т.д. Особенно сложно определить границы геометрического фактора применительно к биоорганическим объектам, обладающим многообразием связей и конформаций. Поэтому приставка «нано» скорее особое обобщенное отражение объектов исследований, прогнозируемых явлений, эффектов и способов их описания, чем просто характеристика протяженности базового структурного элемента.

Если Вы пользуетесь Интернетом, то можете найти, по меньшей мере, несколько десятков определений нанотехнологии. Вот определение, взятое с сайта «РОСНАНОТЕХ»:

Нанотехнологии – совокупность методов и приемов, применяемых при изучении, проектировании, производстве и использовании структур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, интеграции и взаимодействия составляющих их наномасштабных элементов (1–100 нм) для получения объектов с новыми химическими, физическими, биологическими свойствами.

Вот еще одно определение, данное Нобелевским лауреатом Жоресом Ивановичем Алферовым в журнале «Микросистемная техника» №8, 2003, стр.3-13:

«Если при уменьшении объема какого-либо вещества по одной, двум или трем координатам до размеров нанометрового масштаба возникает новое качество, или это качество возникает в композиции из таких объектов, то эти образования следует отнести к наноматериалам, а технологии их получения и дальнейшую работу с ними – к нанотехнологиям.»

Итак, обобщая наши представления об индустрии наносистем, отметим, что ряд базовых понятий с приставкой «нано» наиболее полно отражает именно проявление функционально-системных свойств, а не только чисто геометрические особенности (параметры) объектов. Именно с этой точки зрения приведем эти базовые понятия.

Наносистема – материальный объект в виде упорядоченных или самоупорядоченных, связанных между собой элементов с нанометрическими характеристическими размерами, кооперация которых обеспечивает возникновение у объекта новых свойств, проявляющихся в виде явлений и процессов, связанных с проявлением наномасштабных факторов.

Наноматериалы – вещества и композиции веществ, представляющие собой искусственно или естественно упорядоченную или неупорядоченную систему базовых элементов с нанометрическими характеристическими размерами и особым проявлением физического и (или) химического взаимодействий при кооперации наноразмерных элементов, обеспечивающих возникновение у материалов и систем совокупности ранее неизвестных механических, химических, электрофизических, оптических, теплофизических и других свойств, определяемых проявлением наномасштабных факторов.

Нанотехнология – совокупность методов и способов синтеза, сборки, структуро- и формообразования, нанесения, удаления и модифицирования материалов, включая систему знаний, навыков, умений, аппаратурное, материаловедческое, метрологическое, информационное обеспечение процессов и технологических операций, направленных на создание материалов и систем с новыми свойствами, обусловленными проявлением наномасштабных факторов.

Нанодиагностика – совокупность специализированных методов исследований, направленных на изучение структурных, морфолого-топологических, механических, электрофизических, оптических, биологических характеристик наноматериалов и наносистем, анализ наноколичеств вещества, измерение метрических параметров с наноточностью.

Наносистемотехника – совокупность методов моделирования, проектирования и конструирования изделий различного функционального назначения, в том числе наноматериалов, микро- и наносистем с широким использованием явлений и процессов, проявляющихся в условиях материальных объектов с нанометрическими характеристическими размерами элементов.

Нанонаука – система знаний, основанная на описании, объяснении и предсказании свойств материальных объектов с нанометрическими характеристическими размерами или систем более высокого метрического уровня, упорядоченных или самоупорядоченных на основе наноразмерных элементов.

Нанотехника – машины, механизмы, приборы, устройства, материалы, созданные с использованием новых свойств и функциональных возможностей систем при переходе к наномасштабам и обладающие ранее недостижимыми массогабаритными и энергетическими показателями, технико-экономическими параметрами и функциональными возможностями.

Наноинженерия – научно-практическая деятельность человека по конструированию, изготовлению и применению наноразмерных объектов или структур, обладающих новыми свойствами, а также объектов или структур, созданных методами нанотехнологии.

Соседние файлы в папке Лекции к зачету