Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
11
Добавлен:
02.04.2015
Размер:
294.4 Кб
Скачать
  1. Измерение длины световой волны с помощью бипризмы френеля.

Введение. Свет представляет собой электромагнитные волны. Как и всякие волны, световые волны могут интерферировать. Интерференцией света называется сложение световых пучков, ведущее к образованию светлых и темных полос, которые можно наблюдать визуально.

Если две световые волны придут в одну точку пространства в одинаковой фазе, они будут усиливать друг друга. В этой точке образуется светлый участок интерференционной картины. В тех же точках пространства, в которые волны приходят в противоположных фазах, они будут ослаблять друг друга и там будет темный участок.

Таким образом, результат интерференции зависит от разности фаз интерферирующих волн. Чтобы картина интерференции в каждой точке пространства не менялась со временем, необходимо, чтобы разность фаз была постоянной. В противном случае в каждой точке пространства волны будут то усиливать, то ослаблять друг друга, а глаз воспринимая усредненную картину, не обнаружит интерференционных полос. Следовательно, наблюдать интерференционную картину можно лишь в том случае, если интерферирующие волны имеют строго одинаковую частоту и постоянную разность фаз.

Источники света и испускаемые ими лучи, удовлетворяющие указанным требованиям, называются когерентными. Только когерентные источники света дают стабильные во времени интерференционные полосы.

Теоретические аспекты

Рассмотрим интерференцию света от двух когерентных источников S1 и S2, расстояние между которыми равно d (рис.1).

Проведем перпендикулярно отрезку S1 S2 через его середину прямую OA. Возьмем точку P на прямой АВ, параллельной S1 S2 и обозначим OA через а, а АР - через х.

Тогда по теореме Пифагора:

, (1)

где и - пути, которые пройдут лучи света от источников и до точки , в которой наблюдается интерференция. Из уравнений (1) следует

, или (2)

откуда: , (3)

где - разность хода между интерферирующими лучами.

Если и малы по сравнению с , то приближенно

и

. (4)

Если величина равна нечетному числу полуволн, то световые волны придут в точку в противофазе и погасят друг друга, интенсивность в этой точке будет минимальной. Если же равна четному числу полуволн, то световые волны придут в точку в одинаковых фазах и усилят друг друга – интенсивность будет максимальной.

Условие минимума и, соответственно, максимума интенсивности будет:

, (5)

где ; - длина волны.

В точках

(6)

будут светлые участки интерференционной картины, а в точках

– (7)

– темные участки интерференционной картины. В результате в плоскости АВ будут наблюдаться светлые и темные полосы.

Расстояние между центрами соседних -й и -й светлых полос составит

. (8)

Такое же расстояние будет и между центрами темных полос

Соседние файлы в папке Лаб. работы оптика