Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Органика (1-17 вопросы).docx
Скачиваний:
271
Добавлен:
02.04.2015
Размер:
2.54 Mб
Скачать

1. Предельные углеводороды (алканы). Номенклатура. Изомерия. Основные способы получения. Химические свойства: реакции радикального замещения (Sr) и расщепления. Применение.

Углеводороды - простейшие органические соединения, состоящие из двух элементов: углерода и водорода. Предельными углеводородами, или алканами (международное название), называются соединения, состав которых выражается общей формулой С nН2n+2, где n - число атомов углерода. В молекулах предельных углеводородов атомы углерода связаны между собой простой (одинарной) связью, а все остальные валентности насыщены атомами водорода. Алканы называют также насыщенными углеводородами или парафинами

Физические свойства. В обычных условиях первые четыре члена гомологического ряда алканов (С1 — С4) — газы. Нормальные алканы от пентана до гептадекана(C5 — C17) — жидкости, начиная с С18 и выше — твердые вещества. По мере увеличения числа атомов углерода в цепи, т.е. с ростом относительной молекулярной массы, возрастают температуры кипения и плавления алканов. При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температу­ры кипения, чем нормальные алканы.

Алканы практически нерастворимы в воде, так как их молекулы малополярны и не взаимодействуют с молекулами воды, они хорошо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан и др. Жидкие алканы легко смешиваются друг с другом.

Основные природные источники алканов — нефть и природный газ. Различные фракции нефти содержат алканы от C5H12 до С30Н62. Природный газ состоит из метана (95%) с примесью этана и пропана.

Нормальные алканы имеют названия от греческих числительных. Разветвленные алканы называют по систематической номенклатуре ИЮПАК. Названия характеризуются суффиксом –ан. Все разветвленные алканы рассматриваются как производные углеводородов с наиболее длинной цепью. Все атомы с цепи нумеруются с конца, ближайшего к заместителю. Каждый заместитель обозначается цифрой, указывающей положение в цепи, и группы называются в алфавитном порядке. Для одинаковых заместителей употребляют префиксы: ди-, три- и т.д.

Изомерия обусловлена изомерией углеродного скелета.

Из синтетических методов получения алканов можно выделить следующие:

1. Получение из ненасыщенных углеводородов. Взаимодействие алкенов или алкинов с водородом ("гидрирование") происходит в присутствии металлических катализаторов (Ni, Pd) при

нагревании:

tº. Ni

СН3-СН=СН2 + Н2

СН3-СН2-СН3,

СНз-C≡СН + 2Н2 → СН3-СН2-СН3.

2. Получение из галогенпротводных. При нагревании моногалогензамещенных алканов с металлическим натрием получают алканы с удвоенным числом атомов углерода (реакция Вюрца):

С2Н5Br + 2Na + Br-C2H5 → C2H5-C2H5 + 2NaBr.

Подобную реакцию не проводят с двумя разными галогензамещенными алканами, поскольку при этом получается смесь трех различных алканов

3. Получение из солей карбоновых кислот. При сплавлении безводных солей карбоновых кислот с щелочами получаются алканы, содержащие на один атом углерода меньше по сравнению с углеродной цепью исходных карбоновых кислот:

CH3COONa + NaOH

СН4↑ + Na2CO3.

4.Получение метана. В электрической дуге, горящей в атмосфере водорода, образуется значительное количество метана:

С + 2Н2 → СН4.

Такая же реакция идет при нагревании углерода в атмосфере водорода до 400-500 °С при повышенном давлении в присутствии катализатора.

В лабораторных условиях метан часто получают из карбида алюминия:

Аl4С3 + 12Н2О = ЗСН4↑ + 4Аl(ОН)3.

Химические свойства. В обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированными серной и азотной кислотами, с концентрированными и расплавленными щелочами, не окисляются сильными окислителями - перманганатом калия KMnО4 и т.п.

Химическая устойчивость алканов объясняется высокой проч­ностью σ-связей С-С и С-Н, а также их неполярностью. Непо­лярные связи С-С и С-Н в алканах не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов. Поэтому для алканов характер­ны радикальные реакции, в результате которых получаются сое­динения, где атомы водорода замещены на другие атомы или группы атомов. Следовательно, алканывступают в реакции, про­текающие по механизму радикального замещения, обозначаемого символом SR (от англ, substitution radicalic). По этому механизму легче всего замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.

1. Галогенирование. При взаимодействии алканов с галогена­ми (хлором и бромом) под действием УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов. Общая схема этой реакции показана на примере метана:

Сl2

Сl2

Сl2

Сl2

СН4

СН3Сl

СН2Сl2

СНСl3

ССl4

(*)

-HCl

-HCl

-НСl

-HCl

Реакция образования хлорметана протекает по цепному механизму, который характеризуется следующими стадиями:

а) инициирование цепи:

hv

Сl2

2Сl•

б) Рост цепи. Радикал хлора отнимает у молекулы алкана атом водорода:

Cl•+ СН4→НСl + СН3

При этом образуется алкильный радикал, который отнимает атом хлора у молекулы хлора:

СН3• + Сl2→СН3Сl + Сl•

Эти реакции повторяются до тех пор, пока не произойдет обрыв цепи по одной из реакций:

Cl• + Cl• → Сl2, СН3• + СН3• → С2Н6, СН3• + Cl• → СН3Сl•

Суммарное уравнение реакции:

hv

СН4 + Сl2

СН3Сl + НСl.

Образующийся хлорметан может подвергаться дальнейшему хло­рированию, давая смесь продуктов CH2Cl2, CHCl3, ССl4 по схеме (*).

Развитие теории цепных свободнорадикальных реакций тесно связа­но с именем выдающегося русского ученого, лауреата Нобелевской премии Н.И. Семенова (1896-1986).

2. Нитрование (реакция Коновалова). При действии разбав­ленной азотной кислоты на алканы при 140°С и небольшом дав­лении протекает радикальная реакция:

t °

CH3-CH3 + HNO3

CH3-CH2-NO2 + H2O.

При радикальных реакциях (галогенирование, нитрование) в первую очередь замешаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода. Это объясняется тем, что легче всего разрывается гомолитически связь третичного атома углерода с водородом (энергия связи 376 кДж/моль), затем — вторичного (390 кДж/моль) и только потом — первичного (415 кДж/моль).

3. Изомеризация. Нормальные алканы при определенных условиях могут превращаться в алканы с разветвленной цепью:

4. Крекинг — это гемолитический разрыв связей С-С, который протекает при нагревании и под действием катализаторов. При крекинге высших алканов образуются алкены и низшие ал­каны, при крекинге метана и этана образуются ацетилен:

C8H18 → C4H10 + С4Н8,

2СН4 → С2Н2 + ЗН2,

С2Н6 → С2Н2 +2.

Эти реакции имеют большое промышленное значение. Таким путем высококипящие фракции нефти (мазут) превращают в бензин, керосин и другие ценные продукты.

5. Окисление. При мягком окислении метана кислородом воздуха в присутствии различных катализаторов могут быть получе­ны метиловый спирт, формальдегид, муравьиная кислота:

Мягкое каталитическое окисление бутана кислородом воздуха - один из промышленных способов получения уксусной кислоты:

2C4H 10 + 5O2 → 4CH3COOH + 2Н2О .

кат

На воздухе алканы сгорают до СО2 и Н2О:

СnН2n+2 + (Зn+1)/2О2 = nСО2 + (n+1)Н2О.

Применение:

Основные источники – нефть и природный газ. Газообразные вещества используются как источник топлива ( метан , пробутановая смесь).

Нефтяные продукты используют для производства пластмасс, синтетических волокон, каучуков и т.д.

Некоторые жидкие формы используются как растворители и в качестве ракетного топлива.

Вазелин и вазелиновое масло используют в медицине и косметологии, а также в парфюмерии.

Парафин – для изготовления свечей, в медицине.

2. Алкены. Номенклатура. Изомерия. Цис-, транс- изомеры. Способы получения: дегидрогенизация предельных углеводородов, дегидратация спиртов, дегидрогалогенирование, крекинг нефти. Химические свойства: реакции окисления, полимеризации, димеризации. Отдельные представители и их применение.

Алкены – предельные углеводороды с формулойCnH2n

Строение. Изомерия и номенклатура

Простейшими непредельными (ненасыщенными) соединениями являются углеводороды, содержащие одну или несколько двойных связей. Алкены, содержащие две двойные связи, назы­ваются диенами, содержащие три двойные связи — триенами и т.д. Соединения с несколькими двойными связями имеют общее название полиены.

Алкенами называются непредельные углеводороды, молекулы которых содержат одну двойную связь. Первый представитель этого класса — этилен СН2 = СН2, в связи с чем алкены также на­зывают этиленовыми углеводородами. Ближайшие гомологи эти­лена:

СН3-СН=СН2

СН3-СН2-СН=СН2

СН3-СН=СН-СН3

пропилен

бутен-1

бутен-2

Простейший алкен с разветвленным углеродным скелетом:

2-метил промен

Общая формула гомологического ряда алкенов СnН2n. Она совпадает с общей формулой циклоалкана, поэтому алкены и циклоалканы являются межклассовыми изомерами.

При отщеплении атома водорода от молекул алкенов образу­ются непредельные радикалы обшей формулы CnH2n-1, простей­шие из которых — винил (этенил) иаллил (пропенил):

СН2=СН-

СН2=СН-СН2-

винил

аллил

Атомы углерода при двойной связи находятся в состоянии sp2-гибридизации. Три σ-связи, образованные гибрид­ными орбиталями, располагаются в одной плоскости под углом 120° друг к другу; π-связь образована при перекрывании негибридных 2р-орбиталей соседних атомов углерода. При этом атомные р-орбитали перекрываются не в межъядерном пространстве, а вне его. Поэтому такое "боковое" перекрывание менее эффективно, чем осевое, и, следовательно, π-связь является менее прочной, чем σ-связь. Дополнительное π-связывание двух атомов углерода приводит к тому, что уменьшается расстояние между ядрами, поскольку двойная связь является сочетанием σ- и π-связей. Длина двойной связи С=С составляет 0.133 нм, что существенно меньше длины одинарной связи (0,154 нм). Энергия двойной связи (606 кДж/моль) меньше удвоенного зна­чения энергии одинарной связи (347-2 = 694 кДж/моль); это обус­ловлено меньшей энергией π-связи.

Структурная изомерия алкенов обусловлена изомерией углеродного скелета (например, бутен-1 и 2-метилпропен) и изомерией положения двойной связи.Пространственная, или цис-транс-изомерия обусловлена различным положением заместителей относительно плоскости двойной связи.

Если каждый из атомов углерода при связи С=С связан с дву­мя разными заместителями, то эти заместители могут распола­гаться по одну сторону от плоскости двойной связи (цис-изомер) или по разные стороны (транс-изомер), например:

цис-бутен-2 транс-бутен-2

Эти два изомера нельзя перевести друг в друга без вращения вокруг двойной связи С=С, а это вращение требует разрыва π-связи и затраты большого количества энергии. Поэтому цис- и транс-изомеры представляют собой разные индивидуальные вещества, которые отличаются друг от друга физическими и химическими свойствами. Алкены, у которых хотя бы один из атомов углерода при связи С=С имеет два одинаковых заместителя, не имеют цис-транс-изомеров.

В алкенах с неразветвленной углеродной цепью нумерацию начинают с того конца, ближе к которому находится двойная связь. В названии соответствующего алкана окончание -ан заменяется на -ен. В разветвленных алкенах выбирают главную цепь так, чтобы она содержала двойную связь, даже если она при этом и не будет самой длинной. Перед названием главной цепи указывают номер атома углерода, при котором на­ходится заместитель, и название этого заместителя. Номер после названия главной цепи указывает положение двойной связи, на­пример:

4метилпентен -2

Физические свойства алкенов похожи на свойства алканов, хотя все они имеют несколько более низкие температуры плавления и кипения, чем соответствующие алканы. Например, пентан имеет температуру кипения 36 °С, а пентен-1 — 30 °С. При обычных условиях алкены С2 - С4 — газы. С5 – С15 — жидкости, начиная сC16 — твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях.

В природе алкены встречаются редко. Поскольку алкены являются ценным сырьем для промышленного органического синтеза, разработаны многие способы их получения.

1. Основным промышленным источником алкенов служит крекинг алканов, входящих в состав нефти:

t

С8Н18

С4Н10 + С4Н8


Крекинг протекает по свободнорадикальному механизму при высоких температурах (400-700 °С).

2. Другой промышленный способ получения алкенов - дегидрирование алканов:

t, Cr2O3

СН3-СН2-СН3

СН3-СН=СН2 + Н2

3. В лабораторных условиях алкены получают по реакциям отщепления (элиминирования), при которых от соседних атомов углерода отщепляются два атома или две группы атомов, и образуется дополнительная π-связь. К таким реакциям относятся следующие.

1) Дегидратация спиртов происходит при их нагревании с водоотнимающими средствами, например с серной кислотой при температуре выше 150 °С:

H2SO4

СН3-СН2-ОН

СН2=СН2 + Н2О

2) Отщепление галогеноводородов проводят при действии спиртовых растворов щелочей на моноалкилгалогениды:

С2Н6ОН

СН3-СН2-СНВr-СН3 + КОН

СН3-СН=СН-СН3 + КВr + Н2О

При отщеплении Н2O от спиртов, НВr и HCl от алкилгалогенидов атом водорода преимущественно отщепляется от того из соседних атомов углерода, который связан с наименьшим числом атомов водорода (от наименее гидрогенизированного атома углерода). Эта закономерность носит название правила Зайцева.

3) Дегалогенирование происходит при нагревании дигалогенидов, имеющих атомы галогена у соседних атомов углерода, с активными металлами:

CH2Br-CHBr-CH3 + Mg → СН2=СН-СН3 + MgВr2.

Химические свойства

Полимеризация алкенов и их производных в присутствии кислот протекает по механизму АE:

Н*

nCH2=CHR

(-CH2-CHR-)n

где R = Н, СН3, Cl, С6Н5 и т.д. Молекула CH2=CHR называется мономером, полученное соединение — полимером , число n-степень полимеризации.

Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и другие.

Кроме присоединения, для алкенов характерны также реакции окисления. При мягком окислении алкенов водным раствором перманганата калия (реакция Вагнера) образуются двухатомные спирты:

ЗСН2=СН2 + 2КМnО4 + 4Н2О  ЗНОСН2-СН2ОН + 2MnO2↓ + 2KOH.

В результате протекания этой реакции фиолетовый раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV). Эта реакция, как и реакция обесцвечивания бромной воды, является качественной на двойную связь. При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи с образованием кетонов, карбоновых кислот или СО2, например:

[О]

СН3-СН=СН-СН3

2СН3-СООН

По продуктам окисления можно установить положение двойной связи в исходном алкене.

Как и все другие углеводороды, алкены горят, и при обильном доступе воздуха образуют диоксид углерода и воду:

СnН2n + Зn/2О2 → nСО2↑ + nН2О.

При ограниченном доступе воздуха горение алкенов может приводить к образованию монооксида углерода и воды:

СnН2n + nО2 → nCO↑ + nH2O.

Если смешать алкен с кислородом и пропустить эту смесь над нагретым до 200°С серебряным катализатором, то образуется оксид алкена (эпоксиалкан), например:

При любых температурах алкены окисляются озоном (озон более сильный окислитель, чем кислород). Если газообразный озон пропускают через раствор какого-либо алкена в тетрахлор-метане при температурах ниже комнатной, то происходит реакция присоединения, и образуются соответствующие озониды (циклические перекиси). Озониды очень неустойчивы и могут легко взрываться. Поэтому обычно их не выделяют, а сразу после получения разлагают водой — при этом образуются карбонильные соединения (альдегиды или кетоны), строение которых указывает на строение подвергавшегося озонированию алкена.

Низшие алкены — важные исходные вещества для промышленного органического синтеза. Из этилена получают этиловый спирт, полиэтилен, полистирол. Пропен используют для синтеза полипропилена, фенола, ацетона, глицерина.

Полимеризация – реакция образования высокомолекулярного соединения (полимера) путем последовательного присоединения молекул низкомолекулярного вещества (мономера) по схеме:

Число n называется степенью полимеризации. Реакции полимеризации алкенов идут в результате присоединения по кратным связям:

Димеризация алкенов – образование димера (удвоенной молекулы) в результате реакции присоединения. В присутствии минеральной кислоты (донора протона Н+) происходит присоединение протона по двойной связи молекулы алкена. При этом образуется карбокатион:

Этот карбокатион присоединяется к следующей молекуле алкена с образованием "димерного карбокатиона":

"Димерный карбокатион" стабилизируется путем выброса протона, что приводит к продуктам димеризации алкена – смеси изомерных диизобутиленов (2,4,4-триметипентена-2 и 2,4,4-триметилпентена-1):

Этот процесс протекает при обработке изобутилена (2-метипропена) 60% серной кислотой при температуре 70С. Образовавшаяся в результате смесь диизобутиленов подвергается гидрированию с целью получения "изооктана" (2,2,4-триметилпентана), который применяется для улучшения антидетонационной способности бензина ("изооктан" – стандарт моторного топлива с октановым числом 100).

Подобно реакции димеризации алкенов происходит их полимеризация, только процесс не останавливается на стадии образования димера, а идет дальше и включает в себя множество стадий присоединения молекул алкена к растущему карбокатиону.

3. Алкены. Химические свойства: реакции электрофильного присоединения (AdE). Правило Марковникова. Применение правило Марковникова в реакциях присоединения к несиметричным олефинам. Радикальный механизм присоединения (AdR) (перекисный эффект Караша).

Химические свойства алкенов определяются наличием в их молекулах двойной связи. Электронная плотность π-связи достаточно подвижна и легко вступает в реакции с электрофильными частицами. Поэтому многие реакции алкенов протекают по механизму электрофильного присоединения, обозначаемому символом AE(от англ, addition electrophilic).

Реакции злектрофильного присоединения это ионные процессы, протекающие в несколько стадий.На первой стадии электрофильная частица (чаще всего это бывает протон H+) взаимодействует с π-электронами двойной связи и образует π-комплекс, который затем превращается в карбокатион путем образования ковалентной σ-связи между электрофильной частицей и одним из атомов углерода:

алкен π-комплекс карбокатион

На второй стадии карбокатион реагирует с анионом X-, образуя вторую σ-связь за счет электронной пары аниона:

Ион водорода в реакциях электрофильного присоединения присоединяется к тому из атомов углерода при двойной связи, на котором больше отрицательный заряд.

Распределение зарядов определяется смещением π-электронной плотности под влиянием заместителей: .

Электронодонорные заместители, проявляющие +I -эффект, смещают π-электронную плотность к более гидрогенизированному атому углерода и создают на нем частичный отрицательный заряд.

Этим объясняется правило Марковникова: при присоединении полярных молекул типа НХ(X= Hal, ОН, CN и т.п.) к несимметричным алкенам водород преимущественно присоединяется к более гидрогенизированному атому углерода при двойной связи.

Рассмотрим конкретные примеры реакций присоединения.

1) Гидрогалогенирование. При взаимодействии алкенов с галогеноводородами (HCl, НВr) образуются алкилгалогениды (перекисный эффект Караша) :

СН3-СН=СН2 + НВr СН3-СНВr-СН3.

Продукты реакции определяются правилом Марковникова.

Следует, однако, подчеркнуть, что в присутствии какого-либо органического пероксида полярные молекулы НХ реагируют с алкенами не по правилу Марковникова:

R-O-O-R

СН3-СН=СН2 + НВr

СН3-СН2-СН2Вr

обращает на себя тот факт, что реакция идет против правила Марковникова. такое аномальное явление называется пероксидный эффект.

Это связано с тем, что присутствие перекиси обусловливает радикальный, а не ионный механизм реакции.

Инициирование радикальной цепи:

Рост цепи:

Обрыв цепи:

Хлороводород и йодоводород не присоединяются к алкенам по радикальному механизму (только в присутствие пероксидов – перекисный эффект Караша – описан выше).

Эффект Караша (перекисный эффект) — обращение региоселективностипри присоединениигалогеноводородовкалкенамв присутствиикислородаилиперекисей. Данный эффект, впервые описанный М. Карашем и Ф. Майо в 1933 году, заключается в образовании аномального продукта, формально не соответствующегоправилу Марковникова. Это связывают с изменением механизма реакции, которая в данном случае протекает не какэлектрофильное присоединение, а какрадикальное присоединение.

2) Гидратация. При взаимодействии алкенов с водой в присутствии минеральных кислот (серной, фосфорной) образуются спирты. Минеральные кислоты выполняют роль катализаторов и являются источниками протонов. Присоединение воды также идет по правилу Марковникова:

СН3-СН=СН2 + НОН → СН3-СН(ОН)-СН3.

3) Галогенирование. Алкены обесцвечивают бромную воду:

СН2=СН2 + Вr2 → ВrСН2-СН2Вr.

Эта реакция является качественной на двойную связь.

4) Гидрирование. Присоединение водорода происходит под действием металлических катализаторов:

t, Ni

СН3-СН=СН2 + Н2

СН3-СН2-СН3

5) Полимеризация алкенов и их производных в присутствии кислот протекает по механизму АE:

Н*

nCH2=CHR

(-CH2-CHR-)n

где R = Н, СН3, Cl, С6Н5 и т.д. Молекула CH2=CHR называется мономером, полученное соединение — полимером , число n-степень полимеризации.

Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и другие.

4. Диеновые углеводороды. Номенклатура. Три основных типа диеновых углеводородов. Способы получения сопряженных диеновых углеводородов: дивинила, изопрена. Получение дивинила по методу С.В. Лебедева.

Строение. Изомерия и номенклатура

Алкадиены — непредельные углеводороды, содержащие две двойные связи. Общая формула алкадиенов СnН2n-2.

Если двойные связи разделены в углеродной цепи двумя или более одинарными связями (например, пентадиен-1,4), то такие двойные связи называются изолированными. Химические свойства алкадиенов с изолированными двойными связями не отличаются от свойств алкенов с той лишь разницей, что в ре­акции могут вступать не одна, а две двойные связи независимо друг от друга.

Если двойные связи разделены в цепи только одной s-связью, то их называют сопряженными. Важнейшие представители со­пряженных диенов:

СН2 = СН-СН = СН2 СН2 = С(СН3)-СН = СН2. бутадиен-1,3 изопрен

Существуют также диены с системой С = С = С, называемые аленами: такие двойные связи называют кумулированными. Пер­вый член гомологического ряда — аллен СН2 = С = СН2 : бесцветный газ с tnл = -136,2 °С и tкип = -34,5 °С.

Далее рассмотрим только сопряженные диены, имеющие большое практическое значение.

В сопряженных диенах p-электронные облака двойных связей перекрываются между собой и образуют единое p-электронное облако. В сопряженной системе p-электроны уже не принадлежат определенным связям, они делокализованы по всем атомам, поэтому структуру диенов можно изобразить сле­дующим образом (на примере бутадиена):

Пунктирные линии показывают область делокализации элек­тронов и обозначают промежуточный порядок связи между С-С и С = С. Цепь сопряжения может включать большое число двой­ных связей. Чем она длиннее, тем больше делокализация p-электронов и тем устойчивее молекула.

Для алкадиенов характерны те же виды изомерии, что и для алкенов:

1) изомерия углеродного скелета.

2) изомерия положения двойных связей

3) цис-транс-изомерия.

Номенклатура. Главную цепь в диенах выбирают так, чтобы она содержала обе двойные связи, и нумеруют с того конца, при котором сумма номеров положений двойных связей минимальна. В названии соответствующего алкана окончание -ан заменяется на -диен.

Диеновые углеводороды различаются расположением двойных связей, такое расположение вследствие эффектов сопряжения связей сказывается на их реакционной способности. Существуют три класса диенов:

  1. Аллены — диены с кумулированными связями, замещённые производные пропадиена-1,2 H2C=C=CH2

  2. Сопряжённые диены или 1,3-диены — замещённые производные бутадиена-1,3 CH2=CH–CH=CH2

  3. Изолированные диены, в которых двойные связи располагаются через две и более простых связи С–С

Получение. Основной промышленный способ получения диенов — дегидрирование алканов.

Бутадиен-1,3 (дивинил) получают из бутана:

t,Сr2О3

СН3-СН2-СН2-СН3

СН2=СН-СН=СН2 + 2Н2,

а изопрен (2-метилбутадиен-1,3) — из 2-метилбутана:

t, Сr2О3

СН3-СН(СН3)-СН2-СН3

СН2=С(СН3)-СН=СН2+2Н2.

Бутадиен-1,3 можно также получать по реакции Лебедева пу­тем одновременного дегидрирования и дегидратации этанола:

t, ZnO, Al2O3

2Н5ОН

СН2=СН-СН=СН2 + Н2 + 2Н2О.