Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФТЭ / ФТЭ-л.doc
Скачиваний:
314
Добавлен:
29.03.2015
Размер:
7.72 Mб
Скачать
    1. Магнитные свойства вещества

Всякое вещество является магнетиком, т.е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться). По величине и направлению этого момента, а также по причинам, его породившим, все вещества делятся на группы. Основные из них – диа- и парамагнетики.

Молекулы диамагнетика собственного магнитного момента не имеют. Он возникает у них только под действием внешнего магнитного поля и направлен против него. Таким образом, результирующее магнитное поле в диамагнетике меньше, чем внешнее поле, правда, на очень малую величину. Это приводит к тому, что при помещении диамагнетика в неоднородное магнитное поле он стремится сместиться в ту область, где напряжение магнитного поля меньше.

Молекулы (или атомы) парамагнетика имеют собственные магнитные моменты, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. Так, например, жидкий кислород - парамагнетик, он притягивается к магниту.

Магнитная проницаемость конкретного вещества зависит от многих факторов: напряженности магнитного поля, формы рассматриваемого поля (так как конечные размеры любого магнетика приводят к появлению встречного поля, уменьшающего первоначальное), температуры, частоты изменения магнитного поля, наличия дефектов структуры и т.д.

Существует ряд веществ, в которых квантовые эффекты межатомных взаимодействий приводят к появлению специфических магнитных свойств.

Наиболее интересное свойство - ферромагнетизм. Оно характерно для группы веществ в твердом кристаллическом состоянии (ферромагнетиков), характеризующихся параллельной ориентацией магнитных моментов атомных носителей магнетизма.

Параллельная ориентация магнитных моментов существует в довольно больших участках вещества - доменах. Суммарные магнитные моменты отдельных доменов имеют очень большую величину, однако сами домены обычно ориентированы в веществе хаотично. При наложении магнитного поля происходит ориентация доменов, что приводит к возникновению суммарного магнитного момента у всего объема ферромагнетика, и, как следствие, к его намагничиванию.

Естественно, что ферромагнетики, как и парамагнетики, перемещаются в ту точку поля, где напряженность максимальная (втягиваются в магнитное поле). Из-за большой величины магнитной проницаемости сила, действующая на них, гораздо больше.

Существование доменов в ферромагнетиках возможны только ниже определенной температуры (точка Кюри). Выше точки Кюри тепловое движение нарушает упорядоченную структуру доменов и ферромагнетик становится обычным парамагнетиком.

Диапазон температур Кюри для ферромагнетиков очень широк: у радолиния температура Кюри 200 C, для чистого железа - 1043 К. Практически всегда можно подобрать вещество с нужной температурой Кюри.

При понижении температуры все парамагнетики, кроме тех, у которых парамагнетизм обусловлен электронами проводимости, переходят либо в ферромагнитное, либо в антиферромагнитное состояние.

У некоторых веществ (хром, марганец) собственные магнитные моменты электронов ориентированы антипараллельно (навстречу) друг другу. Такая ориентация охватывает соседние атомы, и их магнитные моменты компенсируют друг друга. В результате антиферромагнетики обладают крайне малой магнитной восприимчивостью и ведут себя как очень слабые парамагнетики.

Для антиферромагнетиков также существует температура, при которой антипараллельная ориентация спинов исчезает. Эта температура называется антиферромагнитной точкой Кюри или точкой Нееля.

У некоторых ферромагнетиков (эрбин, диоброзин, сплавов марганца и меди) таких температур две (верхняя и нижняя точка Нееля), причем антиферромагнитные свойства наблюдаются только при промежуточных температурах. Выше верхней точки вещество ведет себя как парамагнетик, а при температурах, меньших нижней точки Нееля, становится ферромагнетиком.

Необратимое изменение намагниченности ферромагнитного образца, находящегося в слабом постоянном магнитном поле, при циклическом изменении температуры называется температурным магнитным гистерезисом. Наблюдается два вида гистерезиса, вызванных изменением доменной и кристаллической структуры. Во втором случае точка Кюри при нагреве лежит выше, чем при охлаждении.

Ферримагнетизм - (или антиферромагнетизм нескомпенсированный) совокупность магнитных свойств веществ (ферромагнетиков) в твердом состоянии, обусловленных наличием внутри тела межэлектронного обменного взаимодействия, стремящегося создать антипараллельную ориентацию соседних атомных магнитных моментов. В отличие от антиферромагнетиков, соседние противоположно направленные магнитные моменты в силу каких-либо причин не полностью компенсируют друг друга. Поведение ферримагнетика во внешнем поле во многом аналогично ферромагнетику, но температурная зависимость свойств имеет иной вид: иногда существует точка компенсации суммарного магнитного момента при температуре ниже точки Нееля. По электрическим свойствам ферромагнетики - диэлектрики или полупроводники.

Суперпарамагнетизм - квазипарамагнитное поведение систем, состоящих из совокупности экстремально малых ферро- или ферримагнитных частиц. Частицы этих веществ при определенно малых размерах переходят в однодоменное состояние с однородной самопроизвольной намагниченностью по всему объему частицы. Совокупность таких веществ ведет себя по отношению к воздействию внешнего магнитного поля и температуры подобно парамагнитному газу (сплавы меди с кобальтом, тонкие порошки никеля и т.д.).

Очень малые частицы антиферромагнетиков также обладают особыми свойствами, похожими на суперпарамагнетизм, поскольку в них происходит нарушение полной компенсации магнитных моментов. Аналогичными свойствами обладают и тонкие ферромагнитные пленки.

Суперпарамагнетизм применяется в тонких структурных исследованиях, в методах неразрушающего определения размеров, форм, количества и состава магнитной фазы и т.п.

Пьезомагнетики - вещества, у которых при наложении упругих напряжений возникает спонтанный магнитный эффект, пропорциональный первой степени величины напряжений. Этот эффект весьма мал и легче всего его обнаружить в антиферромагнетиках.

Магнитоэлектрики - вещества, у которых при помещении их в электрическое поле возникает магнитный момент, пропорциональный значению поля.

Соседние файлы в папке ФТЭ