Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Desktop_1 / Лекции 1 симестр / МОЛФИЗИКА13.doc
Скачиваний:
32
Добавлен:
29.03.2015
Размер:
224.77 Кб
Скачать

Лекция №13 Молекулярная физика и термодинамика

Температура, теплопередача, Первое начало термодинамики, работа совершаемая телом при изменении объема,

13.1.Температура и теплопередача в термодинамических системах

     Полная энергия термодинамической системы представляет собой сумму кинетической энергии движения всех тел, входящих в систему, потенциальной энергии взаимодействия их между собой и с внешними телами и энергии, содержащейся внутри тел системы. Если из полной энергии вычесть кинетическую энергию, характеризующую макроскопическое движение системы как целого, и потенциальную энергию взаимодействия её тел с внешними макроскопическими телами, то оставшаяся часть будет представлять собой внутреннюю энергию термодинамической системы.

     Внутренняя энергия термодинамической системы включает в себя энергию микроскопического движения и взаимодействия частиц системы, а так же их внутримолекулярную и внутриядерную энергии.

     Полная энергия системы (а, следовательно, и внутренняя энергия) также как потенциальная энергия тела в механике может быть определена с точностью до произвольной константы. Поэтому, если любые макроскопические движения в системе и взаимодействия её с внешними телами отсутствуют, можно принять "макроскопические" составляющие кинетической и потенциальной энергий равными нулю и считать внутреннюю энергию системы равной её полной энергии. Такая ситуация имеет место в случае, когда система находится в состоянии термодинамического равновесия.

     Введём характеристику состояния термодинамического равновесия - температуру. Так называется величина, зависящая от параметров состояния, например, от давления и объёма газа, и являющаяся функцией внутренней энергии системы. Эта функция обычно имеет монотонную зависимость от внутренней энергии системы, то есть растёт с ростом внутренней энергии.

     Температура термодинамических систем, находящихся в состоянии равновесия, обладает следующими свойствами:

     Если две равновесные термодинамические системы, находятся в тепловом контакте и имеют одинаковую температуру, то совокупная термодинамическая система находится в состоянии термодинамического равновесия при той же температуре.

     Если какая-либо равновесная термодинамическая система имеет одну и ту же температуру с двумя другими системами, то эти три системы находятся в термодинамическом равновесии при одной и той же температуре.

     Таким образом, температура есть мера состояния термодинамического равновесия. Для установления этой меры уместно ввести понятие теплопередачи.

     Теплопередачей называется передача энергии от одного тела к другому без переноса вещества и совершения механической работы.

     Если между телами, находящимися в тепловом контакте друг с другом, теплопередача отсутствует, то тела имеют одинаковые температуры и находятся в состоянии термодинамического равновесия друг с другом.

     Если в изолированной системе, состоящей из двух тел, эти тела находятся при разных температурах, то теплопередача будет осуществляться таким образом, чтобы энергия передавалась от более нагретого тела менее нагретому. Этот процесс будет продолжаться до тех пор, пока температуры тел не сравняются, и изолированная система из двух тел не достигнет состояния термодинамического равновесия.

     Для возникновения процесса теплопередачи необходимо создание потоков теплоты, то есть требуется выход из состояния теплового равновесия. Поэтому равновесная термодинамика не описывает процесс теплопередачи, а только его результат - переход в новое равновесное состояние. Описание самого процесса теплопередачи выполнено в шестой главе, посвящённой физической кинетике.

В заключении необходимо отметить, что если одна термодинамическая система обладает более высокой температурой, чем другая, то она не обязательно будет обладать и большей внутренней энергией, несмотря на возрастание внутренней энергии каждой системы с повышением её температуры. Например, больший объём воды может обладать большей внутренней энергией даже при более низкой температуре, чем у меньшего объёма воды. Однако, в этом случае теплопередача (перенос энергии) будет происходить не от тела с большей внутренней энергией к телу с меньшей внутренней энергией, а наоборот, так как направление переноса энергии определяется не величинами внутренних энергий систем, а их температурами.

Соседние файлы в папке Лекции 1 симестр