
- •Министерство науки и образования российской федерации
- •Содержание
- •1. Основные понятия теории игр.
- •2. Математическая модель игры.
- •3. Игры с природой
- •4. Биматричные игры
- •4.1. Примеры биматричных игр
- •4.2. Смешанные стратегии
- •4.3. 2 2 - Биматричные игры. Ситуация равновесия
- •4.4. Поиск равновесных ситуаций
- •4.5. Некоторые итоги
- •5. Понятие коалиционных игр.
- •Примеры
- •Пример 2
- •Задания и задачи
- •Рекомендуемые темы рефератов
- •Вопросы для подготовки к зачету
- •Список рекомендуемой литературы
- •1. Моделирование задачи оптимизации методами линейного программирования.
- •2. Геометрическая интерпретация задачи линейного программирования.
- •3. Общая задача линейного программирования.
- •6. Двойственная задача линейного программирования.
Задания и задачи
Задача 1. Коммерческое предприятие заключило договор на централизованную поставку овощей из теплиц на сумму 10 000 руб. ежедневно. Если в течение дня овощи не поступают, магазин имеет убытки в размере 20 000 руб. от невыполнения плана товарооборота. Магазин может осуществить самовывоз овощей фермера. Для этого он может сделать заказ в транспортном предприятии, что вызовет дополнительные расходы в размере 500 руб. Однако опыт показывает, что в половине случаев посланные машины возвращаются без овощей. Можно увеличить вероятность получения овощей от фермера до 80%, если предварительно посылать туда своего представителя, что требует дополнительных расходов в размере 400 руб. Существует возможность заказать дневную норму овощей у другого надежного поставщика – плодоовощной базы по повышенной на 50% цене. Однако в этом случае, кроме расходов на транспорт (500 руб.), возможны дополнительные издержки в размере 300 руб., связанные с трудностями реализации товара, если в тот же день поступит и централизованная поставка от фермера. Построить игровую модель этой задачи. Какой стратегии надлежит придерживаться магазину, если заранее неизвестно, поступит или не поступит централизованная поставка.
Задача 2. Определить верхнюю и нижнюю цену игры и, если возможно, седловую точку.
2 |
4 |
1 |
5 |
1 |
-1 |
3 |
2 |
5 |
2 |
-4 |
0 |
-2 |
5 |
-3 |
-4 |
Задача 3. Зная платежную матрицу
определить
нижнюю и верхнюю цены игры и найти
решение игры.
Задача 4.Швейное предприятие планирует к массовому выпуску новую модель одежды. Спрос на эту модель не может быть точно определен. Однако можно предположить, что его величина характеризуется тремя возможными состояниями (I II III). С учетом этих состояний анализируются три возможных варианта выпуска данной модели (А, Б, В). Каждый из этих вариантов требует своих затрат и обеспечивает в конечном счете различный эффект. Прибыль (тыс. руб.), которую получает предприятие при данном объеме выпуска модели и соответствующем состоянии спроса, определяется матрицей
I II III
A=
Требуется найти объем выпуска модели одежды, обеспечивающий максимальную величину прибыли при любом состоянии спроса.
Задача 5. Обувная фабрика планирует выпуск двух моделей обуви А и В. Спрос на эти модели не определен, однако можно предположить, что он может принимать одно из двух состояний (I и II). В зависимости от этих состояний прибыль предприятия различна и определяйся матрицей
А=
Найдите оптимальное соотношение между объемами выпуска каждой из моделей, при котором предприятию гарантируется максимальная величина прибыли при любом состоянии спроса.
Задача 6. Найти наилучшие стратегии по критериям: максимакса, Вальда, Сэвиджа, Гурвица (коэффициент пессимизма равен 0,2), Лапласа для следующей таблицы возможных доходов.
Задача 7. Найдите решение биматричной игры:
а)
А=
, В=
.
б)
А=
, В=
.
в)
А=
, В=
.
Самостоятельная работа студентов