Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
литература (3) / Чернышев В.Б. - Экология насекомых - 1996.doc
Скачиваний:
283
Добавлен:
23.03.2015
Размер:
2.34 Mб
Скачать

Влияние температуры на развитие насекомых.

Продолжительность развития (N) от момента откладки яиц и до появления имаго или каждой отдельной стадии обычно измеряется днями. На практике часто применяется понятие скорости развития (V). Очевидно, что V=1/N.

Экспериментальные данные показывают (рис. 2), что с увеличением температуры продолжительность развития постепенно уменьшается, при определенном диапазоне температур достигает минимума, а с дальнейшим повышением температуры может опять увеличиваться. В целом такая кривая очень напоминает цепочку, подвешенную за два конца. Правая часть кривой, показывающая замедление развития при высоких температурах, часто не реализуется из-за высокой смертности насекомых.

Скорость развития, соответственно, сначала медленно возрастает с повышением температуры. Эта скорость увеличивается все быстрее вплоть до точки перегиба кривой, затем кривая становится более пологой, доходит до максимума, а потом либо остается на прежнем уровне, либо несколько снижается при особо высоких температурах.

Очевидно, что зависимость скорости развития от температуры должна в значительной степени объясняться обычными физико-химическими закономерностями. Согласно правилу Вант-Гоффа, скорость химического процесса с повышением температуры на 10° увеличивается в 2 – 3 раза. Тогда, определив скорость развития Vo при какой-либо температуре, можно рассчитать скорость развития при другой температуреtпо следующей формуле:

где – коэффициент увеличения скорости.

Рис.2. Продолжительность развития куколок большого мучного хрущака Tenebrio molitor (Т) и скорость их развития (V) в зависимости от температуры (по А.Крогу из В.В.Яхонтова, 1969)

Таким образом, уравнение Вант-Гоффа – это показательная (экспоненциальная) функция. Очевидно, что оно пригодно только для описания начальной, резко восходящей части экспериментальной кривой. Оно плохо описывает также и ход процесса в области низких температур. Наиболее точно отражает весь ход кривой зависимости скорости развития насекомого от температуры следующее эмпирическое уравнение:

где– максимально возможная скорость развития;- температура, при которой достигается эта скорость;а– коэффициент скорости измененияV относительноt.

В энтомологической практике иногда используют также формулу логистической функции, которая не описывает спад скорости развития при высоких температурах:

,

где а иb– константы уравнения, определяющие наклон и точку перегиба кривой.

Очень удобна для расчетов, хотя и неточна, так называемая сумма эффективных температур. Очевидно, что всегда имеет место пороговая температура развития, ниже которой насекомое не может развиваться (t). Если выращивать насекомое при какой-то постоянной температуреt, которая выше пороговой, то эффективная температура () равна:

Правило суммы эффективных температур предполагает, что для развития каждого насекомого требуется определенная доза тепла, т.е. определенное число "градусо-дней", или тепловая постоянная (К). Тогда при выращивании насекомых в условиях постоянной температурыtона равна:

где N – срок развития в днях. Если температура, как в природе, день ото дня меняется, то формула тепловой постоянной принимает следующий вид:

где t– средняя суточная температура для каждого из дней, i– знак суммы.

Чтобы найти пороговую температуру, не обязательно проводить сложные эксперименты по развитию насекомых при низких температурах. Достаточно определение сроков развития для двух уровней температуры и. Тогда пороговую температуру можно высчитать по формуле:

где N и N соответствующие сроки развития. Обычно пороговая температура для развития насекомых лежит в пределах от +3° до +8° С.

Зная тепловую постоянную К, можно рассчитать срок развития при любой температуре:

Эта формула соответствует гиперболической зависимости типа

Следовательно, кривая зависимости срока развития от температуры будет иметь вид гиперболы. Однако эта гипербола не может отразить увеличение срока развития при высоких температурах.

Скорость развития согласно этой формуле будет иметь вид

так как ивеличины постоянные, то эта формула соответствует прямолинейной зависимости типа

у = ах+ b.

Таким образом, формула суммы эффективных температур применима только в зоне, близкой к точке перегиба восходящей части кривой зависимости скорости развития от температуры. При более низких и более высоких значениях температуры, где кривая уплощается, эта формула дает менее точные результаты.

Сравнивая тепловую постоянную с суммой эффективных температур за сезон, можно приближенно определить возможное количество поколений данного вида за это время. Здесь сумма эффективных температур за сезон (Э) высчитывается почти по той же формуле, что и тепловая постоянная, но вместо срока развитияN, здесь стоит число дней в сезоне (n), когда температура превышает пороговую:

Если, например, сумма эффективных температур в течение вегетационного сезона равна 3200°, а тепловая постоянная – 1000°, то это означает, что в данной местности за год могут развиться три поколения данного вида.

Как уже отмечалось выше, формула суммы эффективных температур довольно приближенно отражает реальную зависимость. Имеются и другие причины, затрудняющие использование этой формулы.

Во-первых, температура тех микроучастков, где находятся насекомые, может отличаться от метеорологических измерений на 10 и более градусов (например, на поверхности растения).

Во-вторых, температура тела насекомого может существенно отличаться от температуры воздуха из-за метаболического тепла и дополнительного нагрева тела в солнечных лучах.

В-третьих, есть основания предполагать, что средняя сумма эффективных температур различна для популяции при нарастании ее численности (начало вспышки массового размножения) и при спаде (кризис). В первом случае развитие идет быстрее и сумма эффективных температур может быть меньше.

В-четвертых, в природе температура все время меняется. Как показывают эксперименты, влияние таких переменных температур не сводится к простой суммации, а представляет собой довольно сложное адаптационное явление. Вопрос о влиянии температурных циклов на насекомых интересен не только с экологической точки зрения, он очень важен для практики массового разведения насекомых. Поэтому остановимся на нем несколько подробнее.

Согласно большинству публикаций, срок развития насекомых заметно укорачивается при переменной температуре по сравнению с соответствующей средней постоянной температурой. Однако эффект явно зависит от вида насекомого. Если, например, у трихограммы при переменной температуре развитие заметно ускоряется, то у дрозофил, наоборот, происходит замедление развития. При переменной температуре имеет место не только ускорение развития, но может резко уменьшаться и смертность, особенно на стадии яйца. Развитие некоторых жужелиц, возможно только при переменной температуре. У ряда бабочек и жуков при переменной температуре заметно возрастает плодовитость.

Все эти эффекты зависят также и от параметров терморитма: от длины "температурного дня", от резкости изменений температуры, от уровней максимальной и минимальной температуры. По-видимому, желательно, чтобы изменения температуры были постепенными, при резких сменах температур может существенно снизиться жизнеспособность насекомых из-за температурного шока или их залипания в результате запотевания стенок садка. Слишком высокий верхний уровень температуры может привести к гибели или стерильности насекомых. Нижний уровень температуры в цикле не столь ограничен и может быть выше или ниже порога развития.

Возможны несколько механизмов, лежащих в основе действия переменных температур. Во-первых, особенности влияния переменных температур можно объяснять тем (Н.И.Горышин), что кривая (рис. 3), описывающая зависимость скорости развития от температуры, имеет изгибы как в нижней, так и верхней части. Если средний уровень переменной температуры ниже точки перегиба кривой, то такая переменная температура должна ускорять развитие, потому что снижение температуры ниже средней для всего цикла мало что изменит в скорости развития, а ее повышение приведет к резкому возрастанию скорости развития. Наоборот, при высоких средних переменная температура должна замедлять развитие, так как нижняя – будет попадать в область резкого изменения функции, а высокая – либо почти не увеличит скорость развития, либо еще ее уменьшит.

Во-вторых, ускорение развития под влиянием переменной температуры, равно как и увеличение жизнеспособности, можно объяснить особенностями физиологической адаптации организма к изменениям температуры. Повышение температуры приводит к резкому "всплеску" метаболизма, который затем постепенно снижается до уровня, типичного для данной высокой температуры.

Рис.3. Скорость развития насекомого при постоянной и переменной температуре (продолжительности термо– и криофазы одинаковы и равны 12 ч) V– скорость развития, t – температура, t – температура в течение криофазы, – температура в течение термофазы,– средняя температура цикла,– скорость развития во время криофазы,– скорость развития во время термофазы, – скорость развития при постоянной температуре, равной средней температуре цикла, – реальная скорость развития при переменной температуре

Понижение температуры, наоборот, приводит к временному резкому снижению обмена, которое, однако, меньше по амплитуде, чем всплеск, и не может его полностью компенсировать. Тем не менее вопрос о механизме влияния переменной температуры на насекомых не может считаться окончательно решенным.

Заканчивая обзор о влиянии температуры на развитие насекомых, отметим, что с повышением температуры может уменьшаться число линек, и, соответственно, личиночных возрастов.