Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
allbest-r-00051009 / 51009.rtf
Скачиваний:
52
Добавлен:
22.03.2015
Размер:
2.04 Mб
Скачать

Импульс, энергия и момент системы как меры движения

Для материальной точки произведение массы тела (или частицы) на его скорость называют его импульсом p=mv.

Энергия представляет собой способность совершать работу. Существует три основных вида энергии:

1) кинетическая энергия, характеризующая состояние движения тела,

2) потенциальная энергия, обусловленная силами, действующими на тело со стороны других тел,

Eпот=mgh,

3) собственная энергия, связанная с массой покоя тела формулой Эйнштейна

Момент импульса (момент количества движения) есть произведение расстояния от тела до оси вращения на перпендикулярную компоненту импульса

L=rp=rmv.

Момент импульса является векторной величиной. Направление вектора момента импульса совпадает с направлением перемещения винта с правой нарезкой, если винт вращается в ту же сторону, что и объект.

В изолированной системе различные формы энергии могут превращаться друг в друга без потерь. Иными словами, в любом физическом процессе энергия сохраняется.

Например, потенциальная энергия может превращаться в кинетическую и обратно без всяких потерь. Иными словами, тело массой m, падая с высоты h, приобретает кинетическую энергию , равную потенциальной mgh.

Чтобы применять законы сохранения для совокупностей частиц (систем) или для макроскопических тел, следует отыскать ту точку системы или тела, которая всегда движется в соответствии с законами сохранения. Такая точка называется центром масс системы.

1. В отсутствие внешних сил центр масс системы движется с постоянной скоростью.

2. Если к системе как к единому целому приложена сила F, то центр масс приобретает ускорение a = F/M, где M - общая масса системы.

3. В отсутствие моментов внешних сил полный момент импульса системы относительно ее центра масс остается постоянным.

Мир непрерывных объектов - физика полей (континуум)

Представление о континууме также родилось в античную эпоху и выразилось, в частности, в лестнице веществ и существ Аристотеля.

Понятие континуума как одно из уточнений категории непрерывности имеет важные методологические функции. Например, Готфрид Вильгельм Лейбниц (1646-1716) считал, что непрерывность обладает онтологическим статусом (“Природа не делает скачков”) и выступает необходимым условием истинности законов природы. Учение, согласно которому все тела сложены из простых элементов, совершенно правильно. Но атомы не могут быть такими элементами: их неделимость - фикция, ибо материя делима до бесконечности. Неделимыми могут быть только атомы нематериальные, силовые. Их Лейбниц назвал монадами.

Идею непрерывности развил далее Боннэ (1720-1793) в форме “лестницы существ”: природа не терпит скачков; все в ней совершается постепенно и равномерно путем оттенков. Вот почему между классами или родами организмов существуют промежуточные группы. Существует постепенный переход от человека к животному, от животного к растению и от растения к минералу.

В физике под континуумом понимается идеализированная модель единого физического пространства-времени. Она получается путем отождествления точек геометрического континуума с точками физического пространства-времени и определения на геометрическом континууме метрических отношений и функциональных связей посредством мысленного воспроизведения движений твердых тел (в классической механике) или световых сигналов (в теории относительности).

В соответствии с представлениями общей теории относительности метрическая структура пространственно-временного континуума детерминируется распределением плотности вещества и излучения во Вселенной. Континуальная модель физического пространства-времени - результат становления и развития классической математики и классической (неквантовой) физики.