Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
[Mel_Tompson]_Filosofiya_nauki(BookFi.org).pdf
Скачиваний:
53
Добавлен:
22.03.2015
Размер:
2.23 Mб
Скачать

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

92

Глава 9. КОСМОЛОГИЯ

Постижение природы мироздания всегда составляло основу поисков и науки, и философии. Как мы видели в главе 1, развитие науки, избравшей методами познания вещей наблюдения, эксперименты и математику, способствовало формированию нового подхода к астрологии. В трудах Коперника, Галилея, Кеплера, Ньютона и других мы обнаруживаем желание не только постичь строение Вселенной, но и открыть законы, которые объяснили бы движение как небесных, так и земных тел. Это постепенно привело к возникновению космологии — физического учения о Вселенной как целом, основанного на результатах исследования наиболее общих свойств той ее части, которая доступна для наблюдений.

В космологии рассматриваются две группы взаимосвязанных вопросов.

Первая группа вопросов

Как устроена Вселенная? Как она возникла? Каково ее будущее? За счет чего она приобрела свой нынешний вид? Какие законы объясняют происходящие в ней процессы?

Эти вопросы касаются порядка, построения и развития Вселенной. Они привели нас от птолемеевой геоцентричес-

244

кой картины мира (через Коперника и Ньютона) к теории о пространственно-временной сингулярности и Большом взрыве, породившем Вселенную 15 миллиардов лет назад.

Вторая группа вопросов

Что является наиболее простым, изначальным и общим в реальности? Что кроется за множественностью видимого нами?

Вопросы такого рода пытаются решать со времен Фалеса, который думал, что мир состоит из воды, и атомистов, пытавшихся отыскать частицы, из которых состоит все, что нас окружает. Стремясь открыть фундаментальные законы природы, они не выходили за пределы ньютоновой физики. Ныне поиски ведутся вокруг единой теории поля, которая могла бы показать, как силы природы (электромагнитное, гравитационное, сильное и слабое взаимодействия) связаны друг с другом.

В современной космологии эти две группы вопросов стыкуются. Строение Вселенной определяется действующими внутри ее силами. Если мы постигнем первое, то познаем и остальное.

Личный взгляд

Философию науки постоянно тревожит одно обстоятельство: необходимость учитывать, что наблюдаемое нами подвержено влиянию наших собственных способностей к наблюдению. Ведь на понимании мира сказывается то, как мы его изучаем и какие вопросы ставим перед собой.

Это особенно заметно проявляется в космологии. Во времена Птолемея считалось, что на земные события воздействуют небесные тела, находящиеся в своих стеклянных сферах. Сегодня грандиозность и объективность природы

245

Вселенной заставляет нас задуматься о значении, положении, смысле и месте человека в общей картине мира.

Эти вопросы, пожалуй, скорее философские и религиозные, нежели научные, но они способны оказать влияние на истолкование фактов человеком. Главной темой настоящей главы является «антропологический принцип» — философская концепция, усматривающая в понятии «человек» основную мировоззренческую категорию и исходящая из нее в объяснении природы, общества и мышления.

РАЗМЕРЫ И СТРУКТУРА

Наша Галактика имеет спиралевидную форму и вращается. Полагают, что она содержит 100 миллиардов звезд, а ее диаметр составляет 100 тысяч световых лет. Солнце — это типичная звезда-карлик, удаленная от центра Галактики на 32 тысячи световых лет. Всего, по оценкам, насчитывается примерно 10 миллиардов галактик. Распределены они в пространстве не равномерно, а в виде скоплений.

Размеры

Одна из поразительных черт современной космологии — масштабы наблюдаемых явлений. Например, в декабре 1997 года один спутник обнаружил чудовищный выброс гамма-излучения. Выброс длился примерно

Томпсон М. Философия науки / Мел Томпсон. — Пер. с англ. А. Гарькавого. — М.: ФАИР-ПРЕСС, 2003. — 304 с. — (Грандиозный мир).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

93

секунду, но выделенная при этом энергия равнялась энергии десяти триллионов звезд нашей Вселенной. Он возник в крайне ограниченной области, не более ста миль в поперечнике, и характеризовался условиями, весьма схожими с теми, что были в первые миллисекунды после Большого взрыва. Позже астрономы сумели определить область в созвездии Большой Медведицы, откуда исходил вы-брос, и засечь его оптическое послесвечение.

246

Событие такой силы примечательно само по себе. Но больше всего поражают расчеты, говорящие, что оно случилось 12 миллиардов лет назад и что все это время свет и излучение шли к Земле. Получается, что это событие произошло примерно за 8 миллиардов лет до появления Земли.

Свету, чтобы дойти от одной части Вселенной до другой, требуется затратить немало времени, поэтому, глядя на небо, мы фактически видим прошлое. Галактику, удаленную на 5 миллионов световых лет, мы можем в действительности наблюдать только такой, какой она была 5 миллионов лет назад, когда свет от нее только отправился в путь. Если наблюдатель в этой галактике посмотрит в нашем направлении, то увидит перед собой лишь туманность. От галактик, удаленных на расстояние свыше 5 миллиардов световых лет (меньше половины диаметра Вселенной), свет начал движение к нам еще до рождения Солнца и планет Солнечной системы.

Вселенная поражает и своей пустотой. Мы представляем Землю сплошной и твердой, а на самом деле в ней много пустот, через которые беспрепятственно могут проникать частицы.

Это прекрасно показывают обнародованные в июне 1998 года совместные открытия ученых из Америки и Японии, которые провели эксперимент по обнаружению и измерению массы нейтрино (элементарных частиц) и пришли к выводу, что они способны проходить сквозь толщу Земли. Ученые использовали емкость с абсолютно чистой водой, размещенную под землей, где каждые девяносто минут обнаруживали присутствие нейтрино по вспышке голубого цвета, образующейся вследствие его столкновения с атомом кислорода.

Данный проект включал также наблюдение за вторичными частицами, бомбардирующими верхний слой атмо-

247

сферы Земли вслед за быстрыми космическими частицами. Это важно для понимания строения Вселенной, поскольку прежде считалось, что нейтрино не имеет массы покоя. Подобные наблюдения были очень важны для ответа на главный вопрос космологии: достаточна ли масса Вселенной, чтобы предотвратить ее бесконечное расширение (см. с. 252—253). Нейтрино могут составлять часть «скрытой массы», или «темной материи», существование которой необходимо для объяснения видимой массы Вселенной.

Комментарий

Трудно представить, что нынешний облик Вселенной и ее будущее зависят от столь малых частиц, которые могут проходить незамеченными сквозь землю. Видимая материя оказывается для нас более значимой из-за своей видимости, но другие уровни вещественной реальности, хотя и остаются скрытыми, играют не менее важную роль.

Эйнштейн полагал, что Вселенную можно представить в виде гиперсферы, а если она конечна, при движении через нее можно лишь вернуться в исходную точку, но не достичь края.

Это звучит странно, если не учитывать положения общей теории относительности о непостоянстве пространства и времени: пространство искривляется в сильных полях тяготения. Но ведь гравитация — одна из фундаментальных сил, которая удерживает Вселенную. Поэтому все пространство подвержено пусть незначительному, но искривлению, и в итоге оно обращается вокруг себя. Такое бесконечное расстояние в конечной Вселенной лучше всего представить, если двигаться вдоль внутренней поверхности шара. Направившись в любую сторону, мы будем осуществлять бесконечное

248

движение по этой поверхности, хотя сама она конечна. Однако, как бы далеко мы ни уходили, мы никогда не удалимся от какой-либо точки этой поверхности дальше чем на диаметр самого шара.

Но теория Эйнштейна оказалась ошибочной. Он полагал, что подобная Вселенная будет конечной и статичной. Почему же тогда силы тяготения не понуждают ее сжиматься? В качестве ответа он ввел «космологическую постоянную», выражающую силу, которая удерживает все на расстоянии и нивелирует гравитацию. Позже, когда было обнаружено, что Вселенная расширяется и эта постоянная не нужна, Эйнштейн признал свою ошибку.

Теория Большого взрыва

Что касается земного опыта, то мы можем наблюдать только настоящее. Прошлое, по определению, есть то, чего уже не существует. А вот в отношении Вселенной (ввиду ограничений, накладываемых скоростью света) применимо как раз обратное. Мы не можем наблюдать ее настоящее, а только прошлое. Чем глубже это наблюдение, тем дальше мы проникаем в прошлое.

В связи с этим существуют два основных способа познания прошлого. Первый — наблюдение

Томпсон М. Философия науки / Мел Томпсон. — Пер. с англ. А. Гарькавого. — М.: ФАИР-ПРЕСС, 2003. — 304 с. — (Грандиозный мир).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

94

за тенденциями настоящего (или по космическим меркам совсем недавнего прошлого), чтобы затем обнаружить их в прошлом. В этот момент происходит разбегание галактик (как от нас, так и друг от друга). При наблюдении за удаляющимся на большой скорости телом меняется спектр света, исходящего от него. В 1929 году американский астроном Эдвин Пауэлл Хаббл (1889—1953) наблюдал «красное смещение» у света, исходящего от далеких галактик. Он обнаружил, что чем дальше расположена галактика, тем быстрее она удаляется от нас. Такое разбегание галактик означает, что Вселенная расширяется.

249

По скорости расширения можно вычислить возраст Вселенной. Приблизительно 10—20 миллиардов лет назад она начала расширяться после «взрыва» (известного как Большой взрыв) из точки, где пространство, время и материя были сжаты в бесконечно малую величину, именуемую пространственно-временной сингулярностью. Крайне важно здесь понять то, что сингулярность — это точка, не принадлежащая пространству и времени, а породившая их.

Трудно представить себе взрыв без разлетающегося в пространстве вещества. Но в начальной стадии не было никакого пространства «вовне», в котором могло бы взорваться вещество. Пространство создавалось начавшимся расширением. Неверно говорить, что Вселенная началась с точки (сингулярности) крайне малых размеров, так как в этом случае мы автоматически предполагаем наличие мира вне этой точки, а ведь тогда (согласно данной теории) отсутствовало всякое «вовне».

Процесс, который привел Вселенную к ее нынешнему виду, состоял в превращении энергии в вещество, начавшее равномерно распространяться в виде горячего газа. Этот газ затем охлаждался и конденсировался, постепенно образуя галактики.

Но как бы убедительны ни были эти доводы, они являются только приложением нынешних тенденций к прошлому. Ведь нам доступно лишь оно, как бы далеко мы ни заглядывали. Поэтому, если эта теория верна, мы должны отыскать в далеком прошлом следы Большого взрыва.

Главное предположение заключается в следующем: если пространство увеличивается по мере расширения, то тогда следы Большого взрыва должны быть не сосредоточены в одном месте, а как бы равномерно рассеяны во Вселенной. Прямое свидетельство этого было предъявлено в 60-е годы ХХ века, когда обнаружили фоновое мик-

250

роволновое излучение (так называемое реликтовое излучение со спектром абсолютно черного тела) с температурой три градуса выше абсолютного нуля.

Каждая теория подтверждается правильностью своих предсказаний. Иначе говоря, мы должны вывести, что следует из теории, а затем убедиться в верности прогноза. В случае с теорией Большого взрыва проверялись некоторые вполне очевидные ее следствия.

Во-первых, мы можем найти некоторые свидетельства раннего состояния Вселенной, что и представляет собой реликтовое излучение.

Во-вторых, если Вселенная началась с Большого взрыва — состояния, когда все начало разлетаться, то (раз силам тяготения не удалось сдержать этот процесс) она должна расширяться и до сих пор. Это подтверждает наблюдение «красного смещения» у далеких галактик. Чем дальше от нас галактика, тем быстрее она удаляется. Таким образом, Вселенная все еще расширяется.

В-третьих, если Вселенная расширяется, в ней должно быть много легких элементов, особенно водорода. Количество этих веществ, наблюдаемых сегодня, согласуется с тем, что предполагает теория.

Но остается много загадок. В частности, неясно, откуда появилось огромное количество вещества и излучения в нынешней Вселенной, а также почему произошло такое быстрое ее

расширение. Пытаясь найти возможный пусковой механизм Большого взрыва, Нил Тьюрок и Стивен Хокинг разработали теорию, благодаря которой появилось понятие «инстантон»1 — точка, включающая пространство, время, вещество и тяготение. «Инстантон» живет лишь один миг, но способен запустить механизм, порождающий бесконечную Вселенную.

251

Более того, задолго до возникновения галактик наблюдалась неоднородность Вселенной, она и сыграла ключевую роль в том, как происходили в дальнейшем конденсация горячего газа и образование тех структур, которые мы наблюдаем сегодня. Недавняя работа американского физика А. Гуса и русского А. Линде1 над моделью с «раздувающейся», или «инфляционной», Вселенной указывает на то, что крайне быстрое раздувание Вселенной на этапе ее эволюции сопровождалось спонтанным рождением вещества и энергии, что и составило первый этап Большого взрыва. Небольшие квантовые отклонения на этой стадии как раз объясняют те неоднородности, которые покрывали, словно рябью, расширяющуюся Вселенную и по мере ее охлаждения привели к возникновению галактик.

Томпсон М. Философия науки / Мел Томпсон. — Пер. с англ. А. Гарькавого. — М.: ФАИР-ПРЕСС, 2003. — 304 с. — (Грандиозный мир).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]